This paper presents a technique to identify and measure the prominent sources of sensor noise in commercially available charge-coupled device (CCD) video cameras by analysis of the output images. Noise fundamentally limits the distinguishable content in an image and can significantly reduce the robustness of an image processing application. Although sources of image sensor noise are well documented, there has been little work on the development of techniques to identify and quantify the types of noise present in CCD video-camera images. A comprehensive noise model for CCD cameras was used to evaluate the technique on a commercially available CCD video camera.Index Terms-Charge-coupled devices (CCDs), image processing, noise measurement, video signal processing.
This study presents a comprehensive measurement of CCD digital-video camera noise. Knowledge of noise detail within images or video streams allows for the development of more sophisticated algorithms for separating true image content from the noise generated in an image sensor. The robustness and performance of an image-processing algorithm is fundamentally limited by sensor noise. The individual noise sources present in CCD sensors are well understood, but there has been little literature on the development of a complete noise model for CCD digital-video cameras, incorporating the effects of quantization and demosaicing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.