The exact quantum dynamics of the reduced density matrix of two coupled spin qubits in a quantum Heisenberg XY spin star environment in the thermodynamic limit at arbitrarily finite temperatures is obtained using a novel operator technique. In this approach, the transformed Hamiltonian becomes effectively Jaynes-Cumming like and thus the analysis is also relevant to cavity quantum electrodynamics. This special operator technique is mathematically simple and physically clear, and allows us to treat systems and environments that could all be strongly coupled mutually and internally. To study their entanglement evolution, the concurrence of the reduced density matrix of the two coupled central spins is also obtained exactly. It is shown that the dynamics of the entanglement depends on the initial state of the system and the coupling strength between the two coupled central spins, the thermal temperature of the spin environment and the interaction between the constituents of the spin environment. We also investigate the effect of detuning which in our model can be controlled by the strength of a locally applied external magnetic field. It is found that the detuning has a significant effect on the entanglement generation between the two spin qubits.
The authors demonstrate theoretically that there exists electromagnetically induced transparency in an asymmetric double quantum dot system using tunneling instead of pump laser. The group velocity slowdown factor is theoretically analyzed as a function of electron tunneling at different broadened linewidths. With feasible parameters for applications to a 100Gbits∕s optical network, numerical calculation infers group velocity as low as 300m∕s. The scheme is expected to be useful in constructing a variable semiconductor optical buffer based on electromagnetically induced transparency in an asymmetric double quantum dot controlled by voltage.
The dynamics of charge qubit in a double quantum dot coupled to phonons is
investigated theoretically in terms of a perturbation treatment based on a
unitary transformation. The dynamical tunneling current is obtained explicitly.
The result is compared with the standard perturbation theory at Born-Markov
approximation. The decoherence induced by acoustic phonons is analyzed at
length. It is shown that the contribution from deformation potential coupling
is comparable to that from piezoelectric coupling in small dot size and large
tunneling rate case. A possible decoupling mechanism is predicted.Comment: 8 pages, 6 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.