Summary Paragraph The fast-growing field of bioelectronic medicine aims to develop engineered systems that relieve clinical conditions through stimulation of the peripheral nervous system (PNS) 1 – 5 . Technologies of this type rely largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis/bladder pain syndrome 4 , 6 , 7 . Conventional, continuous stimulation protocols, however, cause discomfort and pain, particularly when treating symptoms that can be intermittent in nature (e.g. sudden urinary urgency) 8 . Direct physical coupling of electrodes to the nerve can lead to injury and inflammation 9 – 11 . Furthermore, typical therapeutic stimulators target large nerve bundles that innervate multiple structures, resulting in a lack of organ specificity. This paper introduces a miniaturized bio-optoelectronic implant that avoids these limitations, via the use of (1) an optical stimulation interface that exploits microscale inorganic light emitting diodes (μ-ILEDs) to activate opsins, (2) a soft, precision biophysical sensor system that allows continuous measurements of organ function, and (3) a control module and data analytics approach that allows coordinated, closed-loop operation of the system to eliminate pathological behaviors as they occur in real-time. In an example reported here, a soft strain gauge yields real-time information on bladder function. Data analytics algorithms identify pathological behavior, and automated, closed-loop optogenetic neuromodulation of bladder sensory afferents normalize bladder function in the context of acute cystitis. This all-optical scheme for neuromodulation offers chronic stability and the potential for cell-type-specific stimulation.
The chemistry that governs the dissolution of device-grade, monocrystalline silicon nanomembranes into benign end products by hydrolysis serves as the foundation for fully eco/biodegradable classes of high-performance electronics. This paper examines these processes in aqueous solutions with chemical compositions relevant to groundwater and biofluids. The results show that the presence of Si(OH) and proteins in these solutions can slow the rates of dissolution and that ion-specific effects associated with Ca can significantly increase these rates. This information allows for effective use of silicon nanomembranes not only as active layers in eco/biodegradable electronics but also as water barriers capable of providing perfect encapsulation until their disappearance by dissolution. The time scales for this encapsulation can be controlled by introduction of dopants into the Si and by addition of oxide layers on the exposed surfaces.The former possibility also allows the doped silicon to serve as an electrical interface for measuring biopotentials, as demonstrated in fully bioresorbable platforms for in vivo neural recordings. This collection of findings is important for further engineering development of water-soluble classes of silicon electronics.
Sensors that reproduce the complex characteristics of cutaneous receptors in the skin have important potential in the context of artificial systems for controlled interactions with the physical environment. Multimodal responses with high sensitivity and wide dynamic range are essential for many such applications. This report introduces a simple, three-dimensional type of microelectromechanical sensor that incorporates monocrystalline silicon nanomembranes as piezoresistive elements in a configuration that enables separate, simultaneous measurements of multiple mechanical stimuli, such as normal force, shear force, and bending, along with temperature. The technology provides high sensitivity measurements with millisecond response times, as supported by quantitative simulations. The fabrication and assembly processes allow scalable production of interconnected arrays of such devices with capabilities in spatiotemporal mapping. Integration with wireless data recording and transmission electronics allows operation with standard consumer devices.
Emerging classes of bioresorbable electronic materials serve as the basis for active biomedical implants that are capable of providing sensing, monitoring, stimulating, and other forms of function over an operating period matched to biological processes such as wound healing. These platforms are of interest because subsequent dissolution, enzymatic degradation, and/ or bioresorption can eliminate the need for surgical extraction. This report introduces natural wax materials as long-lived, hydrophobic encapsulation layers for such systems, where biodegradation eventually occurs by chain scission. Studies of wax stability as an encapsulation material demonstrate the ability to retain operation of underlying biodegradable electronic systems for durations between a few days to a few weeks during complete immersion in aqueous solutions in ex-vivo physiological conditions. Electrically conductive composites result from the addition of tungsten micro/nanoparticles, as a conductive, printable paste with similar lifetimes. Demonstrations of these materials in partially biodegradable wireless light-emitting diodes and nearfield communication circuits illustrate their use in functional bioresorbable electronic systems. Investigations in animal models reveal no signs of toxicity or other adverse biological responses.
Ultraviolet (UV) solar radiation is a leading cause of skin disease. Quantitative, continuous knowledge of exposure levels can enhance awareness and lead to improved health outcomes. Devices that offer this type of measurement capability in formats that can seamlessly integrate with the skin are therefore of interest. This paper introduces materials, device designs, and data acquisition methods for a skin‐like, or “epidermal,” system that combines colorimetric and electronic function for precise dosimetry in the UV‐A and UV‐B regions of the spectrum, and for determination of instantaneous UV exposure levels and skin temperature. The colorimetric chemistry uses (4‐phenoxyphenyl)diphenylsulfonium triflate (PPDPS‐TF) with crystal violet lactone (CVL) and Congo red for UV‐A and UV‐B operation, respectively, when integrated with suitable optical filters. Coatings of poly(ethylene‐vinylacetate) (PEVA) protect the functional materials from sunscreen and other contamination. Quantitative information follows from automated L*a*b* color space analysis of digital images of the devices to provide accurate measurements when calibrated against standard nonwearable sensors. Techniques of screen printing and lamination allow aesthetic designs and integration with epidermal near field communication platforms, respectively. The result is a set of attractive technologies for managing UV exposure at a personal level and on targeted regions of the body.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.