Mitochondria maintain tight regulation of inner mitochondrial membrane (IMM) permeability to sustain ATP production. Stressful events cause cellular calcium (Ca 2+ ) dysregulation followed by rapid loss of IMM potential known as permeability transition (PT), which produces osmotic shifts, metabolic dysfunction, and cell death. The molecular identity of the mitochondrial PT pore (mPTP) was previously unknown. We show that the purified reconstituted c-subunit ring of the F O of the F 1 F O ATP synthase forms a voltage-sensitive channel, the persistent opening of which leads to rapid and uncontrolled depolarization of the IMM in cells. Prolonged high matrix Ca 2+ enlarges the c-subunit ring and unhooks it from cyclophilin D/cyclosporine A binding sites in the ATP synthase F 1 , providing a mechanism for mPTP opening. In contrast, recombinant F 1 beta-subunit applied exogenously to the purified c-subunit enhances the probability of pore closure. Depletion of the c-subunit attenuates Ca 2+ -induced IMM depolarization and inhibits Ca 2+ and reactive oxygen species-induced cell death whereas increasing the expression or single-channel conductance of the c-subunit sensitizes to death. We conclude that a highly regulated c-subunit leak channel is a candidate for the mPTP. Beyond cell death, these findings also imply that increasing the probability of c-subunit channel closure in a healthy cell will enhance IMM coupling and increase cellular metabolic efficiency.metabolism | necrosis | apoptosis | ion channel | excitotoxicity M itochondria produce ATP by oxidative phosphorylation (OXPHOS). Leak currents in the inner mitochondrial membrane (IMM) reduce the efficiency of this process by uncoupling the electron transport system from ATP synthase activity. Many studies have described the biophysical and pharmacological features of an IMM pore [the mitochondrial permeability transition pore (mPTP)] that is responsible for a rapid IMM uncoupling, causing osmotic shifts within the mitochondrial matrix in the setting of cellular Ca 2+ dysregulation and adenine nucleotide depletion (1-4). Some studies suggest that such uncoupling also functions during physiological events and that the mPTP may transiently operate as a Ca 2+ -release channel (5-7). Although models for the molecular identity of the mPTP have been proposed (8), deletions of putative components, such as adenine nucleotide translocase (ANT) and the voltagedependent anion channel (VDAC), have failed to prevent rapid depolarizations (9). In the meantime, nonpore forming regulatory components of the mPTP, such as cyclophilin D (CypD), have been extensively investigated (10, 11).We recently reported a leak conductance sensitive to ATP/ ADP and the Bcl-2 family member B-cell lymphoma-extra large (Bcl-x L ) within the membrane of isolated submitochondrial vesicles (SMVs) enriched in ATP synthase (12, 13). We demonstrated binding of Bcl-x L within F 1 to the beta-subunit of the ATP synthase, suggesting that the channel responsible for the leak conductance lies within the memb...
Anti-apoptotic Bcl2 family proteins such as Bcl-xL protect cells from death by sequestering apoptotic molecules, but also contribute to normal neuronal function. We find in hippocampal neurons that Bcl-xL enhances the efficiency of energy metabolism. Our evidence suggests that Bcl-xL interacts directly with the beta subunit of the F1FO ATP synthase, decreasing an ion leak within the F1FO ATPase complex and thereby increasing net transport of H+ by F1FO during F1FO ATPase activity. By patch clamping submitochondrial vesicles enriched in F1FO ATP synthase complexes, we find that, in the presence of ATP, pharmacological or genetic inhibition of Bcl-xL increases the membrane leak conductance. In addition, recombinant Bcl-xL protein directly increases ATPase activity of purified synthase complexes, while inhibition of endogenous Bcl-xL decreases F1FO enzymatic activity. Our findings suggest that increased mitochondrial efficiency contributes to the enhanced synaptic efficacy found in Bcl-xL expressing neurons.
To promote cell survival, the antiapoptotic factor Bcl-xL both inhibits Bax-induced mitochondrial outer membrane permeabilization and stabilizes mitochondrial inner membrane ion flux and thus overall mitochondrial energetic capacity.
Identification and use of cell surface cluster of differentiation (CD) biomarkers have enabled much scientific and clinical progress. We identify a CD surface antigen code for the neural lineage based on combinatorial flow cytometric analysis of three distinct populations derived from human embryonic stem cells: (1) CD15+/CD29HI/CD24LO surface antigen expression defined neural stem cells; (2) CD15−/CD29HI/CD24LO revealed neural crest-like and mesenchymal phenotypes; and (3) CD15−/CD29LO/CD24HI selected neuroblasts and neurons. Fluorescence-activated cell sorting (FACS) for the CD15−/CD29LO/CD24HI profile reduced proliferative cell types in human embryonic stem cell differentiation. This eliminated tumor formation in vivo, resulting in pure neuronal grafts. In conclusion, combinatorial CD15/CD24/CD29 marker profiles define neural lineage development of neural stem cell, neural crest, and neuronal populations from human stem cells. We believe this set of biomarkers enables analysis and selection of neural cell types for developmental studies and pharmacological and therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.