Abstract. Analogues of the KP and the Toda lattice hierarchy called dispersionless KP and Toda hierarchy are studied. Dressing operations in the dispersionless hierarchies are introduced as a canonical transformation, quantization of which is dressing operators of the ordinbry KP and Toda hierarchy. An alternative construction of general solutions of the ordinary KP and Toda hierarchy is given as twistor construction which is quatization of the similar construction of solutions of dispersionless hierarchies. These results as well as those obtained in previous papers are presented with proofs and necessary technical details.
An analogue of the KP hierarchy, the SDiff(2) KP hierarchy, related to the group of area-preserving diffeomorphisms on a cylinder is proposed. An improved Lax formalism of the KP hierarchy is shown to give a prototype of this new hierarchy. Two important potentials, S and τ , are introduced. The latter is a counterpart of the tau function of the ordinary KP hierarchy. A Riemann-Hilbert problem relative to the group of areadiffeomorphisms gives a twistor theoretical description (nonlinear graviton construction) of general solutions. A special family of solutions related to topological minimal models are identified in the framework of the Riemann-Hilbert problem. Further, infinitesimal symmetries of the hierarchy are constructed. At the level of the tau function, these symmetries obey anomalous commutation relations, hence leads to a central extension of the algebra of infinitesimal area-preserving diffeomorphisms (or of the associated Poisson algebra).
(2) group. Symmetries of the tau function turn out to have commutator anomalies, hencegive a representation of a central extension of the SDiff(2) algebra.
Searching for the integrable structures of supersymmetric gauge theories and topological strings, we study melting crystal, which is known as random plane partition, from the viewpoint of integrable systems. We show that a series of partition functions of melting crystals gives rise to a tau function of the one-dimensional Toda hierarchy, where the models are defined by adding suitable potentials, endowed with a series of coupling constants, to the standard statistical weight. These potentials can be converted to a commutative sub-algebra of quantum torus Lie algebra. This perspective reveals a remarkable connection between random plane partition and quantum torus Lie algebra, and substantially enables to prove the statement. Based on the result, we briefly argue the integrable structures of five-dimensional $\mathcal{N}=1$ supersymmetric gauge theories and $A$-model topological strings. The aforementioned potentials correspond to gauge theory observables analogous to the Wilson loops, and thereby the partition functions are translated in the gauge theory to generating functions of their correlators. In topological strings, we particularly comment on a possibility of topology change caused by condensation of these observables, giving a simple example.Comment: Final version to be published in Commun. Math. Phys. . A new section is added and devoted to Conclusion and discussion, where, in particular, a possible relation with the generating function of the absolute Gromov-Witten invariants on CP^1 is commented. Two references are added. Typos are corrected. 32 pages. 4 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.