A method is presented that allows the design of freeform lenses with an arbitrary contour in a flexible and robust manner. The method is based on the generation of two equi-flux grids representing the source and target beams, with two separate curl-free mappings from an equi-spatial rectangular grid. Because the source and target grids are generated independently from one another, one can map arbitrary complex source beams with certain contours onto arbitrary complex target beams within other contours with high convergence probability. The method is illustrated by calculating a triangular freeform lens that reshapes a triangular beam from a Lambertian source into a uniform pentagonal irradiance distribution on a target plane.
Most work in the field of freeform lens design has been focused on finding design algorithms for continuous freeform lens surfaces which transform an arbitrary ingoing light distribution into an arbitrary outgoing distribution. The shape of the resulting continuous lens surfaces depends fully on the source and target light distribution for which the lenses are tailored. In some cases this results in large, voluminous optical components which depending on the application are not practical. Fresnel lenses can have a much smaller volume, but are not straightforward to design in the case of freeform lenses. This paper demonstrates a new method to design freeform Fresnel lenses based on concentric freeform segments. Such lenses have a much lower number of discontinuities compared to already existing Fresnel-type freeform lenses which are based on an array of facets. Less discontinuities means less stray light due to the unavoidable rounding errors with current manufacturing processes. The new design method is first explained, and then illustrated for a freeform Fresnel lens with a rectangular target distribution in the far-field.
LEDs that are used today in general lighting applications provide high luminous flux from small packages which can result into high peak luminance and glare. The use of diffusors allows to reduce peak luminances, but these components do not allow accurate control over the resulting intensity pattern as is possible with non-imaging lenses for lowétendue sources such as LEDs. In this paper a new design method is presented to create a rotational or transverse symmetric segmented lens which results in a reduced peak luminance but still allows excellent control over the resulting intensity distribution. Each segment of the lens spreads out the light in a certain angular range, but the different contributions of each lens segment result together into the desired target intensity distribution. The design method is based on the iterative optimization of a linear transformation of a source intensity distribution into a target intensity distribution, starting from a transformation that yields maximal light beam spreading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.