Purpose: Despite being the standard metric in patient-specific quality assurance (QA) for intensitymodulated radiotherapy (IMRT), gamma analysis has two shortcomings: (a) it lacks sensitivity to small but clinically relevant errors (b) it does not provide efficient means to classify the error sources. The purpose of this work is to propose a dual neural network method to achieve simultaneous error detection and classification in patient-specific IMRT QA. Methods: For a pair of dose distributions, we extracted the dose difference histogram (DDH) for the low dose gradient region and two signed distance-to-agreement (sDTA) maps (one in x direction and one in y direction) for the high dose gradient region. An artificial neural network (ANN) and a convolutional neural network (CNN) were designed to analyze the DDH and the two sDTA maps, respectively. The ANN was trained to detect and classify six classes of dosimetric errors: incorrect multileaf collimator (MLC) transmission (AE1%) and four types of monitor unit (MU) scaling errors (AE1% and AE2%). The CNN was trained to detect and classify seven classes of spatial errors: incorrect effective source size, 1 mm MLC leaf bank overtravel or undertravel, 2 mm single MLC leaf overtravel or undertravel, and device misalignment errors (1 mm in x-or y direction). An in-house planar dose calculation software was used to simulate measurements with errors and noise introduced. Both networks were trained and validated with 13 IMRT plans (totaling 88 fields). A fivefold cross-validation technique was used to evaluate their accuracy. Results: Distinct features were found in the DDH and the sDTA maps. The ANN perfectly identified all four types of MU scaling errors and the specific accuracies for the classes of no error, MLC transmission increase, MLC transmission decrease were 98.9%, 96.6%, and 94.3%, respectively. For the CNN, the largest confusion occurred between the 1-mm-MLC bank overtravel class and the 1-mmdevice alignment error in x-direction class, which brought the specific accuracies down to 90.9% and 92.0%, respectively. The specific accuracy for the 2-mm-single MLC leaf undertravel class was 93.2% as it misclassified 5.7% of the class as being error free (false negative). Otherwise, the specific accuracy was above 95%. The overall accuracies across the fivefold were 98.3 AE 0.7% and 95.6% AE 1.5% for the ANN and the CNN, respectively. Conclusions: Both the DDH and the sDTA maps are suitable features for error classification in IMRT QA. The proposed dual neural network method achieved simultaneous error detection and classification with excellent accuracy. It could be used in complement with the gamma analysis to potentially shift the IMRT QA paradigm from passive pass/fail analysis to active error detection and root cause identification.
The authors have previously shown the feasibility of using an artificial neural network (ANN) to eliminate the volume average effect (VAE) of scanning ionization chambers (ICs). The purpose of this work was to evaluate the method when applied to beams of different energies (6 and 10 MV) and modalities [flattened (FF) vs unflattened (FFF)], measured with ICs of various sizes. Methods: The three-layer ANN extracted data from transverse photon beam profiles using a sliding window, and output deconvolved value corresponding to the location at the center of the window. Beam profiles of seven fields ranging from 2 × 2 to 10 × 10 cm 2 at four depths (1.5, 5, 10 and 20 cm) were measured with three ICs (CC04, CC13, and FC65-P) and an EDGE diode detector for 6 MV FF and FFF. Similar data for the 10 MV FF beam was also collected with CC13 and EDGE. The EDGE-measured profiles were used as reference data to train and test the ANNs. Separate ANNs were trained by using the data of each beam energy and modality. Combined ANNs were also trained by combining data of different beam energies and/or modalities. The ANN's performance was quantified and compared by evaluating the penumbra width difference (PWD) between the deconvolved and reference profiles. Results: Excellent agreement between the deconvolved and reference profiles was achieved with both separate and combined ANNs for all studied ICs, beam energies, beam modalities, and geometries. After deconvolution, the average PWD decreased from 1-3 mm to under 0.15 mm with separate ANNs and to under 0.20 mm with combined ANN. Conclusions: The ANN-based deconvolution method can be effectively applied to beams of different energies and modalities measured with ICs of various sizes. Separate ANNs yielded marginally better results than combined ANNs. An IC-specific, combined ANN can provide clinically acceptable results as long as the training data includes data of each beam energy and modality.
The purpose of this work is to study the feasibility of photon beam profile deconvolution using a feedforward neural network (NN) in very small fields (down to 0.56 × 0.56 cm 2 ). The method's independence of the delivery and scanning system is also investigated. Lateral beam profiles of photon fields between 0.56 × 0.56 cm 2 and 4.03 × 4.03 cm 2 were collected on a Siemens Artiste linear accelerator. Three scanning ionization chambers (SNC 125c, PTW 31021, and PTW 31022) of sensitive volumes ranging from 0.016 cm 3 to 0.108 cm 3 were used with a PTW MP3 water phantom. A reference dataset was also collected with a PTW 60019 microDiamond detector to train and test individual NNs for each ionization chamber. Further testing of the trained NNs was performed with additional test data collected on an Elekta Synergy linear accelerator using a Sun Nuclear 3D Scanner. The results were evaluated with a 1D gamma analysis (0.5 mm/0.5%). After the deconvolution, the gamma passing rates increased from 54.79% to 99.58% for the SNC 125c, from 57.09% to 99.83% for the PTW 31021, and from 91.03% to 96.36% for the PTW 31022. The delivery system, the scanning system, the scanning mode (continuous vs. step-by-step), and the electrometer had no significant influence on the results. This study successfully demonstrated the feasibility of using NN to correct the beam profiles of very small photon fields collected with ionization chambers of various sizes. Its independence of the delivery and scanning system was also shown.
The use of the ionization chamber array ICProfiler (ICP) is limited by its relatively poor detector spatial resolution and the inherent volume averaging effect (VAE). The purpose of this work is to study the feasibility of reconstructing VAE-free continuous photon beam profiles from ICP measurements with a machine learning technique. Methods: In-and cross-plane photon beam profiles of a 6 MV beam from an Elekta linear accelerator, ranging from 2 × 2 to 10 × 10 cm 2 at 1.5 cm, 5 cm, and 10 cm depth, were measured with an ICP. The discrete measurements were interpolated with a Makima method to obtain continuous beam profiles. Artificial neural networks (ANNs) were trained to restore the penumbra of the beam profiles. Plane-specific (in-and cr-plane) ANNs and a combined ANN were separately trained. The performance of the ANNs was evaluated using the penumbra width difference (PWD, the difference between the penumbra widths of the reconstructed and the reference profile). The plane-specific and the combined ANNs were compared to study the feasibility of using a single ANN for both inand cross-plane. Results: The profiles reconstructed with all the ANNs had excellent agreement with the reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.