Models of host–pathogen interactions are crucial for the analysis of microbial pathogenesis. In this context, invertebrate hosts, including Drosophila melanogaster (fruit fly), Caenorhabditis elegans (nematode) and Galleria mellonella (moth), have been used to study the pathogenesis of fungi and bacteria. Each of these organisms offers distinct benefits in elucidating host–pathogen interactions. In this study,we present a newinvertebrate infection model to study fungal infections: the Tenebrio molitor (beetle) larvae. Here we performed T. molitor larvae infection with one of two important fungal human pathogens, Candida albicans or Cryptococcus neoformans, and analyzed survival curves and larva infected tissues.We showed that increasing concentrations of inoculum of both fungi resulted in increased mortality rates, demonstrating the efficiency of the method to evaluate the virulence of pathogenic yeasts. Additionally, following 12 h post-infection, C. albicans formsmycelia, spreading its hyphae through the larva tissue,whilst GMS stain enabled the visualization of C. neoformans yeast and theirmelanin capsule. These larvae are easier to cultivate in the laboratory than G. mellonella larvae, and offer the same benefits. Therefore, this insect model could be a useful alternative tool to screen clinical pathogenic yeast strainswith distinct virulence traits or different mutant strains.
Natural polysaccharides have emerged as an important class of bioactive compounds due their beneficial biological effects. Here we investigated the protective and healing effects of rhamnogalacturonan (RGal) isolated from Acmella oleracea (L.) R.K. Jansen leaves in an experimental model of intestinal inflammation in mice and in heterogeneous human epithelial colorectal adenocarcinoma cells (Caco-2). The findings demonstrated that RGal treatment for 7 days reduced the severity of DSS-induced colitis by protecting mice from weight loss, macroscopic damage and reduction of colon length. When compared to the DSS group, RGal also protected the colon epithelium and promoted the maintenance of mucosal enterocytes and mucus secreting goblet cells, in addition to conserving collagen homeostasis and increasing cell proliferation. In an in vitro barrier function assay, RGal reduced the cellular permeability after exposure to IL-1β, while decreasing IL-8 secretion and claudin-1 expression and preserving the distribution of occludin. Furthermore, we also observed that RGal accelerated the wound healing in Caco-2 epithelial cell line. In conclusion, RGal ameliorates intestinal barrier function in vivo and in vitro and may represent an attractive and promising molecule for the therapeutic management of ulcerative colitis.
The present study describes the manufacture of an antifungal device composed of oriental mustard flour and hydroxyethyl-cellulose (H-OMF) and evaluates its efficacity in inhibiting Aspergillus flavus growth and aflatoxin B1 (AFB1) production in almonds. Additionally, it compares the H-OMF with allyl isothiocyanate (AITC) and a freeze-dried extract of yellow mustard flour (YMF-E); such substances were previously described as antifungal. Minimum inhibitory concentration (MIC), Minimum fungicidal concentration (MFC), the H-OMF in vitro antifungal activity, and the residual fungal population, as well as the production of AFB1 in almonds were determined. AITC and YMF-E showed significant antifungal activity in vitro. Additionally, the in vitro activity of H-OMF avoided mycelial growth by applying 30 mg/L. Almonds treated with AITC (5.07, 10.13, and 20.26 mg/L) and H-OMF (2000 and 4000 mg/L) showed a reduction in the population of A. flavus and the production of AFB1 to values below the limit of detection. YMF-E showed effectiveness by in vitro methodologies (MIC and MFC) but did not show efficacy when applied in almonds. Our findings indicated that the hydroxyethyl-cellulose-based device containing oriental mustard flour might be utilised as a fumigant to increase the safety of almonds and could be extended to other cereals or dry fruits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.