The biological treatment of ammonia-rich landfill leachates due to an inadequate C to N ratio requires expensive supplementation of carbon from an external carbon source. In an effort to reduce treatment costs, the objective of the study was to determine the feasibility of nitrogen removal via the nitrite pathway during landfill leachate co-treatment with municipal wastewater. Initially, the laboratory-scale sequencing batch reactor (SBR) was inoculated with nitrifying activated sludge and fed only raw municipal wastewater (RWW) during a start-up period of 9 weeks. Then, in the co-treatment period, consisting of the next 17 weeks, the system was fed a mixture of RWW and an increasing quantity of landfill leachates (from 1 to 10 % by volume). The results indicate that landfill leachate addition of up to 10 % (by volume) influenced the effluent quality, except for BOD5. During the experiment, a positive correlation (r2 = 0.908) between ammonia load in the influent and nitrite in the effluent was observed, suggesting that the second step of nitrification was partially inhibited. The partial nitrification (PN) was also confirmed by fluorescence in situ hybridisation (FISH) analysis of nitrifying bacteria. Nitrogen removal via the nitrite pathway was observed when the oxygen concentration ranged from 0.5 to 1.5 mg O2/dm3 and free ammonia (FA) ranged from 2.01 to 35.86 mg N-NH3/dm3 in the aerobic phase. Increasing ammonia load in wastewater influent was also correlated with an increasing amount of total nitrogen (TN) in the effluent, which suggested insufficient amounts of assimilable organic carbon to complete denitrification. Because nitrogen removal via the nitrite pathway is beneficial for carbon-limited and highly ammonia-loaded mixtures, obtaining PN can lead to a reduction in the external carbon source needed to support denitrification.
Progressive urban development affects environmental balance and disrupts the hydrologic cycle, in which rainfall plays a significant role. Since rainwater is considered a valuable resource of the environment, many technical solutions are implemented that enable effective rainwater management. On the other hand, stormwater runoff from urban areas contains numerous (also toxic) substances, and therefore should be properly treated. In this study, a multistage constructed wetland (MCW) pilot installation was used to remove selected groups of priority substances and emerging pollutants from rainwater discharged from the urbanized catchment of the Kołobrzeska stormwater collector in Gdańsk, Poland. The obtained results show that rainwater runoff was characterized by a variable concentrations of heavy metals (Zn, Cd, Cu, Ni, Pb, Hg), polycyclic aromatic hydrocarbons (benzo(a)pyrene, benzo(b)fluoranthene, phenanthrene, fluoranthene and pyrene) and microplastics. Depending on the hydraulic load of the bed, the reduction efficiency for heavy metals ranged from 26.19 to 100%, and for microplastics from 77.16 to 100%, whereas for polycyclic aromatic hydrocarbons it was consistently high, and equaled 100%.
Due to climate change and anthropogenic pressure, freshwater availability is declining in areas where it has not been noticeable so far. As a result, the demands for alternative sources of safe drinking water and effective methods of purification are growing. A solution worth considering is the treatment of rainwater by microfiltration. This study presents the results of selected analyses of rainwater runoff, collected from the roof surface of individual households equipped with the rainwater harvesting system. The method of rainwater management and research location (rural area) influenced the low content of suspended substances (TSS < 0.02 mg/L) and turbidity (< 4 NTU). Microfiltration allowed for the further removal of suspension particles with sizes larger than 0.45 μm and with efficiency greater than 60%. Granulometric analysis indicated that physical properties of suspended particles vary with the season and weather. During spring, particles with an average size of 500 μm predominated, while in autumn particles were much smaller (10 μm). However, Silt Density Index measurements confirmed that even a small amount of suspended solids can contribute to the fouling of membranes (SDI > 5). Therefore, rainwater cannot be purified by microfiltration without an appropriate pretreatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.