Abstract:The abundance of cellulosic wastes make them attractive source of energy for producing electricity in microbial fuel cells (MFCs). However, electricity production from cellulose requires obligate anaerobes that can degrade cellulose and transfer electrons to the electrode (exoelectrogens), and thus most previous MFC studies have been conducted using two-chamber systems to avoid oxygen contamination of the anode. Single-chamber, air-cathode MFCs typically produce higher power densities than aqueous catholyte MFCs and avoid energy input for the cathodic reaction. To better understand the bacterial communities that evolve in single-chamber air-cathode MFCs fed cellulose, we examined the changes in the bacterial consortium in an MFC fed cellulose over time. The most predominant bacteria shown to be capable electron generation was Firmicutes, with the fermenters decomposing cellulose Bacteroidetes. The main genera developed after extended operation of the cellulose-fed MFC were cellulolytic strains, fermenters and electrogens that included: Parabacteroides, Proteiniphilum, Catonella and Clostridium. These results demonstrate that different communities evolve in air-cathode MFCs fed cellulose than the previous two-chamber reactors.
Lignosulfonate and lignosulfonate hydrolyzed under alkaline conditions were used as the polyol components in polyurethane foam formulations. Although the treatment increased hydroxyl group abundance, it did not improve the applicability of hydrolyzed lignosulfonate in polyurethane foam. Thus, the use of original lignosulfonate yielded foams of thermal stability and mechanical properties comparable to other types of biobased foams (Young's moduli 0.95 to 4.42 MPa, 50% weight loss, and temperature ca. 500 °C). Lignosulfonates can be a renewable polyol component for the formulation of rigid, semi-rigid, and flexible foams.
a Two hyperbranched polyglycerols (HBPGs) and one oligoglycerol containing bisphenol A in the core of the molecule were synthesized from glycerol carbonate and applied as polyols in 2-component polyurethane adhesive systems. It was shown that mechanical performance of the joints made in solid wood depended on the hydroxyl functionality of the polyglycerol as well as on the type of the isocyanate used as a crosslinker. The shear strengths of the best-performing joints exceeded that of the substrate. Eventually, it was proved that hyperbranched polyglycerols might be convenient glycerol-derived raw materials for polyurethane adhesives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.