In this article, we consider the one-dimensional transport equation with delay and advanced arguments. A maximum principle is proven for the problem considered. As an application of the maximum principle, the stability of the solution is established. It is also proven that the solution’s discontinuity propagates. Finite difference methods with linear interpolation that are conditionally stable and unconditionally stable are presented. This paper presents applications of unconditionally stable numerical methods to symmetric delay arguments and differential equations with variable delays. As a consequence, the matrices of the difference schemes are asymmetric. An illustration of the unconditional stable method is provided with numerical examples. Solution graphs are drawn for all the problems.
In this article, we consider a delayed system of first-order hyperbolic differential equations. The presence of the delay term in first-order hyperbolic delay differential equations poses significant challenges in both analysis and numerical solutions. The delay term also makes it more difficult to use standard numerical methods for solving differential equations, as these methods often require that the differential equation be evaluated at the current time step. To overcome these challenges, specialized numerical methods and analytical techniques have been developed for solving first-order hyperbolic delay differential equations. We investigated and presented analytical results, such as the maximum principle and stability results. The propagation of discontinuities in the solution was also discussed, providing a framework for understanding its behavior. We presented a fractional-step method using a backward finite difference scheme and showed that the scheme is almost first-order convergent in space and time through the derivation of the error estimate. Additionally, we demonstrated an application of the proposed method to the problem of variable delay differential equations. We demonstrated the practical application of the proposed method to solving variable delay differential equations. The proposed algorithm is based on a numerical approximation method that utilizes a finite difference scheme to discretize the differential equation. We validated our theoretical results through numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.