Titanium dioxide nanoparticles (TiO2 NPs) are widely used in paints, printing ink, rubber, paper, cosmetics, sunscreens, car materials, cleaning air products, industrial photocatalytic processes, and decomposing organic matters in wastewater due to their unique physical, chemical, and biological properties. The present study was conducted to assess the antiparasitic efficacies of synthesized TiO2 NPs utilizing leaf aqueous extract of Solanum trilobatum against the adult head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae); larvae of cattle tick Hyalomma anatolicum (a.) anatolicum Koch (Acari: Ixodidae), and fourth instar larvae of malaria vector Anopheles subpictus Grassi (Diptera: Culicidae). The green synthesized TiO2 NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy analysis (EDX), and Atomic force microscopy (AFM). XRD analysis of synthesized TiO2 NPs revealed that the particles were in the form of nanocrystals as evidenced by the major peaks at 2θ values of 27.52°, 36.21°, and 54.43° identified as 110, 101, and 211 reflections, respectively. FTIR spectra exhibited a prominent peak at 3,466 cm(-1) and showed OH stretching due to the alcoholic group, and the OH group may act as a capping agent. SEM images displayed NPs that were spherical, oval in shape, individual, and some in aggregates with an average size of 70 nm. Characterization of the synthesized TiO2 NPs using AFM offered a three-dimensional visualization and uneven surface morphology. The pediculocidal and acaricidal activities of synthesized TiO2 NPs showed the percent mortality of 31, 42, 63, 82, 100; 36, 44, 67, 89, and 100 at 2, 4, 6, 8, and 10 mg/L, respectively, against P. h. capitis and H. a. anatolicum. The average larval percent mortality of synthesized TiO2 NPs was 38, 47, 66, 79, and 100 at 1, 2, 3, 4, and 5 mg/L, respectively, against A. subpictus. The maximum activity was observed in the aqueous leaf extract of S. trilobatum, TiO(OH)2 solutions (bulk), and synthesized TiO2 NPs with LC50 values of 35.14, 25.85, and 4.34 mg/L; 47.15, 29.78, and 4.11 mg/L; and 28.80, 24.01, and 1.94 mg/L, and r (2) values of 0.982, 0.991, and 0.992; 0.947, 0.987, and 0.997; and 0.965, 0.998 and 0.985, respectively, against P. h. capitis, H. a. anatolicum, and A. subpictus. This study provides the first report on the pediculocidal, acaricidal, and larvicidal activity of synthesized TiO2 NPs. This is an ideal eco-friendly, novel, low-cost, and simple approach to satisfy the requirement of large-scale industrial production bearing the advantage for the control of P. h. capitis, H. a. anatolicum, and A. subpictus.
As one of the most promising fast energy storage devices, supercapacitor has been attracting intense attention for many emerging applications. However, how to enhance the electrochemical performance of electrode materials is still the main issue among various researches. In this paper, hierarchical porous carbons derived from Eleocharis dulcis has been prepared by chemical activation process with the aid of KOH at elevated temperature. Results show that the N, P co-doped porous carbon exhibits excellent electrochemical performance, it owns a specific capacitance of 340.2 F/g at 1 A/g, and obtains outstanding cycling stability of 96.9% of capacitance retention at 10 A/g after 5,000 cycles in a three-electrode system. Moreover, in the two-electrode system, the product still maintains a high specific capacitance of 227.2 F/g at 1 A/g, and achieves good electrochemical cycle stability (94.2% of capacitance retention at 10 A/g after 10,000 cycles); besides, its power/energy density are 3694.084 and 26.289 Wh/kg, respectively. Therefore, the combination of facile synthesis strategy and excellent electrochemical performance makes Eleocharis dulcis-based porous carbon as a promising electrode material for supercapacitor.
Designing and developing non-noble metal-based heterogeneous catalysts have a substantial importance in biomass conversion. Meerwein-Ponndorf-Verley (MPV) reaction is a significant pathway for eco-friendly catalytic transfer hydrogenation (CTH) of biomass derived furfural into furfuryl alcohol. In this work, a series of copper-supported hydroxyapatite (HAp) catalysts with different copper loadings (2–20 wt.%) were prepared by a facile impregnation method and tested in the reduction of furfural to furfuryl alcohol using 2-propanol as a hydrogen donor. The structural and chemical properties of the synthesised catalysts were analysed by using various techniques (XRD, N2 sorption, SEM, TEM, UV-DRS, ICP, FTIR, TPR, TPD-CO2 and N2O titration). The effect of copper loading was found to be significant on the total performance of the catalysts. The results demonstrate that 5CuHAp catalyst possess highly dispersed copper particles and high basicity compared to all other catalysts. Overall, 5CuHAp exhibited highest conversion (96%) and selectivity (100%) at 140 °C at 4 h time on stream. The optimised reaction conditions were also determined to gain the high activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.