We report, for the first time, the observation of a Gouy–Chapman capacitance minimum at the potential of zero charge of the Pt(111)‐aqueous perchlorate electrolyte interface. The potential of zero charge of 0.3 V vs. NHE agrees very well with earlier values obtained by different methods. The observation of the potential of zero charge of this interface requires a specific pH (pH 4) and anomalously low electrolyte concentrations (<10−3 m). By comparison to gold and mercury double‐layer data, we conclude that the diffuse double layer structure at the Pt(111)‐electrolyte interface deviates significantly from the Gouy–Chapman theory in the sense that the electrostatic screening is much better than predicted by purely electrostatic mean‐field Poisson–Boltzmann theory.
We present detailed measurements of the double-layer capacitance of the Pt(111)–electrolyte interface close to the potential of zero charge (PZC) in the presence of several different electrolytes consisting of anions and cations that are considered to be nonspecifically adsorbed. For low electrolyte concentrations, we show strong deviations from traditional Gouy–Chapman–Stern (GCS) behavior that appear to be independent of the nature of the electrolyte ions. Focusing on the capacitance further away from PZC and the trends for increasing ion concentration, we observe ion-specific capacitance effects that appear to be related to the size or hydration strength of the ions. We formulate a model for the structure of the electric double layer of the Pt(111)–electrolyte interface that goes significantly beyond the GCS theory. By combining two existing models, namely, one capturing the water reorganization on Pt close to the PZC and one accounting for an attractive ion–surface interaction not included in the GCS model, we can reproduce and interpret the main features the experimental capacitance of the Pt(111)–electrolyte interface. The model suggests a picture of the double layer with an increased ion concentration close to the interface as a consequence of a weak attractive ion–surface interaction, and a changing polarizability of the Pt(111)–water interface due to the potential-dependent water adsorption and orientation.
Electrochemistry has the potential to sustainably transform molecules with electrons supplied by renewable electricity. It is one of many solutions towards a more circular, sustainable and equitable society. To achieve this, collaboration between industry and research laboratories is a must. Atomistic understanding from fundamental experiments and modelling can be used to engineer optimized systems whereas limitations set by the scaled-up technology can direct the systems studied in the research laboratory. In this Primer, best practices to run clean laboratoryscale electrochemical systems and tips for the analysis of electrochemical data to improve accuracy and reproducibility are introduced. How characterization and modelling are indispensable in providing routes to garner further insights into atomistic and mechanistic details is discussed. Finally, important considerations regarding material and cell design for scaling up water electrolysis are highlighted and the role of hydrogen in our society's energy transition is discussed. The future of electrochemistry is bright and major breakthroughs will come with rigour and improvements in the collection, analysis, benchmarking and reporting of electrochemical water splitting data.
We report an efficient electrocatalyst for the oxidation of hydrazine,apromising fuel for fuel cells and an important analyte for health and environmental monitoring. To design this material, we emulated natural nitrogen-cycle enzymes,f ocusing on designing ac ooperative,m ulti-doped active site.T he catalytic oxidation occurs on Fe 2 MoC nanoparticles and on edge-positioned nitrogen dopants,a ll welldispersed on ah ierarchically porous,g raphitic carbon matrix that provides active site exposure to mass-transfer and charge flow. The new catalyst is the first carbide with HzOR activity.It operates at the most negative onset potentials reported for carbon-based HzOR catalysts at pH 14 (0.28 Vvs. RHE), and has good-to-excellent activity at pH values down to 0. It shows high faradaic efficiency for oxidation to N 2 (3.6 e À /N 2 H 4 ), and is perfectly stable for at least 2000 cycles. Conflict of interestTheauthors declare no conflict of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.