Clindamycin, a lincosamide antibiotic, binds to 23S ribosomal RNA and inhibits protein synthesis. The A2058G mutation in 23S RNA results in bacterial resistance to clindamycin. To understand the influence of this mutation on short-range interactions of clindamycin with 23S RNA, we carried out full-atom molecular dynamics simulations of a ribosome fragment containing clindamycin binding site. We compared the dynamical behavior of this fragment simulated with and without the A2058G mutation. Molecular dynamics simulations suggest that clindamycin in the native ribosomal binding site is more internally flexible than in the A2058G mutant. Only in the native ribosome fragment did we observe intramolecular conformational change of clindamycin around its C7-N1-C10-C11 dihedral. In the mutant, G2058 makes more stable hydrogen bonds with clindamycin hindering its conformational freedom in the ribosome-bound state. Clindamycin binding site is located in the entrance to the tunnel through which the newly synthesized polypeptide leaves the ribosome. We observed that in the native ribosome fragment, clindamycin blocks the passage in the tunnel entrance, whereas in the mutated fragment the aperture is undisturbed due to a different mode of binding of clindamycin in the mutant. Restricted conformational freedom of clindamycin in a position not blocking the tunnel entrance in the A2058G mutant could explain the molecular mechanism of bacterial resistance against clindamycin occurring in this mutant.Electronic supplementary materialThe online version of this article (10.1007/s00894-018-3689-5) contains supplementary material, which is available to authorized users.
Lincosamides are a class of antibiotics used both in clinical and veterinary practice for a wide range of pathogens. This group of drugs inhibits the activity of the bacterial ribosome by binding to the 23S RNA of the large ribosomal subunit and blocking protein synthesis. Currently, three X-ray structures of the ribosome in complex with clindamycin are available in the Protein Data Bank, which reveal that there are two distinct conformations of the pyrrolidinyl propyl group of the bound clindamycin. In this work, we used quantum mechanical methods to investigate the probable conformations of clindamycin in order to explain the two binding modes in the ribosomal 23S RNA. We studied three lincosamide antibiotics: clindamycin, lincomycin, and pirlimycin at the B3LYP level with the 6-31G** basis set. The focus of our work was to connect the conformational landscape and electron densities of the two clindamycin conformers found experimentally with their physicochemical properties. For both functional conformers, we applied natural bond orbital (NBO) analysis and the atoms in molecules (AIM) theory, and calculated the NMR parameters. Based on the results obtained, we were able to show that the structure with the intramolecular hydrogen bond C=O…H–O is the most stable conformer of clindamycin. The charge transfer between the pyrrolidine-derivative ring and the six-atom sugar (methylthiolincosamide), which are linked via an amide bond, was found to be the dominant factor influencing the high stability of this conformer.FigureMolecular graph of more stable conformer of clindamycin.
Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.