The results of studies on the biological influence of magnetic fields are controversial and do not provide clear answers regarding their impact on cell functioning. Fluoride compounds are substances that influence free radical processes, which occur when the reactive forms of oxygen are present. It is not known whether static magnetic fields (SMF) cause any changes in fluoride assimilation or activity. Therefore, the aim of this work was to determine the potential relationship between magnetic field exposure to, and the antioxidant system of, fibroblasts cultured with fluoride ions. Three chambers with static magnetic fields of different intensities (0.4, 0.6, and 0.7 T) were used in this work. Fluoride ions were added at a concentration of 0.12 mM, which did not cause the precipitation of calcium or magnesium. The results of this study show that static magnetic fields reduce the oxidative stress caused by fluoride ions and normalize the activities of antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). Static magnetic fields modify the energy state of fibroblasts, causing an increase in the ATP concentration and a decrease in the MDA concentration. These results suggest that exposure to fluoride and an SMF improves the tolerance of cells to the oxidative stress induced by fluoride ions.
One of the most malignant skin cancers is melanoma-it has a high metastatic potential as well as a high resistance to treatment, which results in a high mortality rate. The basic method for treating early-stage melanomas is surgery alone. If surgery is not possible or as an adjuvant therapy, radiotherapy is used; chemotherapy is rarely used because of its low response rate (Perera et al., 2014). One promising therapeutic strategy is targeted therapy that involves blocking the BRAF kinase (about 50% of patients have a BRAF mutation), which results in a disruption of the MAPK signaling pathway and slows down the proliferation of cancer cells (Zaman et al., 2019). In addition, research is being conducted into the use of antimelanoma vaccines (Vasquez et al., 2017). Nonetheless, the low level of the effectiveness of these treatments, especially in the 3rd and 4th stages of its clinical advancement, has led to a search for new
The available evidence from in vitro and in vivo studies is deemed not sufficient to draw conclusions about the potential health effects of static magnetic field (SMF) exposure. Therefore, the aim of the present study was to determine the influence of static magnetic fields and phloretin on the redox homeostasis of human dermal fibroblasts. Control fibroblasts and fibroblasts treated with phloretin were subjected to the influence of static magnetic fields. Three chambers with static magnetic fields of different intensities (0.4, 0.55, and 0.7 T) were used in the study. Quantification of superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase 1 (GPX1), microsomal glutathione S-transferase 1 (MGST1), glutathione reductase (GSR), and catalase (CAT) messenger RNAs (mRNAs) was performed by means of real-time reverse transcription PCR (QRT-PCR) technique. Superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were measured using a commercially available kit. No significant differences were found in SOD1, SOD2, GPX1, MGST1, GSR, and CAT mRNA levels among the studied groups in comparison to the control culture without phloretin and without the magnet. There were also no changes in SOD, GPx, and CAT activities. In conclusion, our study indicated that static magnetic fields generated by permanent magnets do not exert a negative influence on the oxidative status of human dermal fibroblasts. Based on these studies, it may also be concluded that phloretin does not increase its antioxidant properties under the influence of static magnetic fields. However, SMF-induced modifications at the cellular and molecular level require further clarification.
Results of research assessing the biological impact of static magnetic fields are controversial. So far, they have not provided a clear answer to their influence on cell functioning. Since the use of permanent magnets both in everyday life and in industry becomes more and more widespread, the investigations are continued in order to explain these controversies and to evaluate positive applications. The goal of current work was to assess the impact of static magnetic field of different intensities on redox homeostasis in cultures of fibroblasts. The use of permanent magnets allowed avoiding the thermal effects which are present in electromagnets. During the research we used 6 chambers, designed exclusively by us, with different values of field flux density (varying from 0.1 to 0.7 T). We have noted the decrease in the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx). The static magnetic fields did not modify the energy state of fibroblasts— adenosine triphosphate (ATP) concentration was stable, as well as the generation of malondialdehyde (MDA)—which is a marker of oxidative stress. Results of research suggest that static magnetic fields generated by permanent magnets do not cause oxidative stress in investigated fibroblasts and that they may show slight antioxidizing activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.