HIGHLIGHTS:• High-dose high-temperature TL emission is present in LiF:Mg,Cu,P' glowcurves.• LiF:Mg,Cu,P can measure doses ranging from below 1 μGy to about 1 MGy.• Thermally-induced sensitivity loss of the samples can be recovered.• Sensitivity damage of the samples after high-dose measurements is Fuldy reversible.• High-dose measurements changes to the structure of the material are reversible. AbstractHighly sensitive LiF:Mg,Cu,P (MCP) detectors enable measurements of radiation doses from tens of nanograys up to a few kilograys, where the saturation of the signal of the main dosimetric peak occurs. Thanks to the recently observed high-dose high-temperature emission of MCP detectors heated to temperatures up to 600°C after exposures to radiation doses ranging from 1 kGy to 1 MGy, a new method of TL measurement of radiation doses has been recently developed at the Institute of Nuclear Physics (IFJ). This method can measure doses ranging from micrograys up to a megagray. So far, high dose measurements were performed on fresh MCP samples and each detector was used only once, because as a result of these measurements, the detectors lose their sensitivity to a large extent. In this study, a specific thermal treatment intended to fully restore the loss of MCPs TL sensitivity was sought. We have investigated several annealing procedures, applying different temperatures (from 400°C up to 700°C) for different periods of time (10-30 minutes) in argon atmosphere. In this way we were able to recover MCP sensitivity fully, allowing for reuse of the samples after high-dose irradiation and high-temperature measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.