We show that a two-excitation process in superfluid helium, combined with sensitivity to meV energy depositions, can probe dark matter down to the ∼keV warm dark matter mass limit. This mass reach is 3 orders of magnitude below what can be probed with ordinary nuclear recoils in helium at the same energy resolution. For dark matter lighter than ∼100 keV, the kinematics of the process requires the two athermal excitations to have nearly equal and opposite momentum, potentially providing a built-in coincidence mechanism for controlling backgrounds.
Dark matter (DM) could couple to particles in the Standard Model (SM) through a light vector mediator. In the limit of small coupling, this portal could be responsible for producing the observed DM abundance through a mechanism known as freeze-in. Furthermore, the requisite DM-SM couplings provide a concrete benchmark for direct and indirect searches for DM. In this paper, we present updated calculations of the relic abundance for DM produced by freeze-in through a light vector mediator. We identify an additional production channel: the decay of photons that acquire an in-medium plasma mass. These plasmon decays are a dominant channel for DM production for sub-MeV DM masses, and including this channel leads to a significant reduction in the predicted signal strength for DM searches. Accounting for production from both plasmon decays and annihilations of SM fermions, the DM acquires a highly non-thermal phase space distribution which impacts the cosmology at later times; these cosmological effects will be explored in a companion paper.
We report on the MIT Epoch of Reionization (MITEoR) experiment, a pathfinder low-frequency radio interferometer whose goal is to test technologies that improve the calibration precision and reduce the cost of the high-sensitivity 3D mapping required for 21 cm cosmology. MITEoR accomplishes this by using massive baseline redundancy, which enables both automated precision calibration and correlator cost reduction. We demonstrate and quantify the power and robustness of redundancy for scalability and precision. We find that the calibration parameters precisely describe the effect of the instrument upon our measurements, allowing us to form a model that is consistent with χ 2 per degree of freedom < 1.2 for as much as 80% of the observations. We use these results to develop an optimal estimator of calibration parameters using Wiener filtering, and explore the question of how often and how finely in frequency visibilities must be reliably measured to solve for calibration coefficients. The success of MITEoR with its 64 dual-polarization elements bodes well for the more ambitious Hydrogen Epoch of Reionization Array (HERA) project and other next-generation instruments, which would incorporate many identical or similar technologies.
Recent measurements by the Planck experiment of the power spectrum of temperature anisotropies in the cosmic microwave background radiation reveal a deficit of power in low multipoles compared to the predictions from best-fit ΛCDM cosmology. If the low-l anomaly persists after additional observations and analysis, it might be explained by the presence of primordial isocurvature perturbations in addition to the usual adiabatic spectrum, and hence may provide the first robust evidence that early-Universe inflation involved more than one scalar field. In this paper we explore the production of isocurvature perturbations in nonminimally coupled two-field inflation. We find that this class of models readily produces enough power in the isocurvature modes to account for the Planck low-l anomaly, while also providing excellent agreement with the other Planck results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.