An animal's decision depends not only on incoming sensory evidence but also on its fluctuating internal state. This internal state is a product of cognitive factors, such as fatigue, motivation, and arousal, but it is unclear how these factors influence the neural processes that encode the sensory stimulus and form a decision. We discovered that, over the timescale of tens of minutes during a perceptual decision-making task, animals slowly shifted their likelihood of reporting stimulus changes. They did this unprompted by task conditions. We recorded neural population activity from visual area V4 as well as prefrontal cortex, and found that the activity of both areas slowly drifted together with the behavioral fluctuations. We reasoned that such slow fluctuations in behavior could either be due to slow changes in how the sensory stimulus is processed or due to a process that acts independently of sensory processing. By analyzing the recorded activity in conjunction with models of perceptual decision-making, we found evidence for the slow drift in neural activity acting as an impulsivity signal, overriding sensory evidence to dictate the final decision. Overall, this work uncovers an internal state embedded in the population activity across multiple brain areas, hidden from typical trial-averaged analyses and revealed only when considering the passage of time within each experimental session. Knowledge of this cognitive factor was critical in elucidating how sensory signals and the internal state together contribute to the decision-making process.
An animal's decision depends not only on incoming sensory evidence but also on its fluctuating internal state. This state embodies multiple cognitive factors, such as arousal and fatigue, but it is unclear how these factors influence the neural processes that encode sensory stimuli and form a decision. We discovered that, unprompted by task conditions, animals slowly shifted their likelihood of detecting stimulus changes over the timescale of tens of minutes. Neural population activity from visual area V4, as well as from prefrontal cortex, slowly drifted together with these behavioral fluctuations. We found that this slow drift, rather than altering the encoding of the sensory stimulus, acted as an impulsivity signal, overriding sensory evidence to dictate the final decision. Overall, this work uncovers an internal state embedded in population activity across multiple brain areas and sheds further light on how internal states contribute to the decisionmaking process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.