Cell migration is an important feature of glial cells. Here, we used the Drosophila eye disc to decipher the molecular network controlling glial migration. We stimulated glial motility by pan-glial PDGF receptor (PVR) activation and identified several genes acting downstream of PVR. Drosophila lox is a non-essential gene encoding a secreted protein that stiffens the extracellular matrix (ECM). Glial-specific knockdown of Integrin results in ECM softening. Moreover, we show that lox expression is regulated by Integrin signaling and vice versa, suggesting that a positive-feedback loop ensures a rigid ECM in the vicinity of migrating cells. The general implication of this model was tested in a mammalian glioma model, where a Lox-specific inhibitor unraveled a clear impact of ECM rigidity in glioma cell migration.
Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the biology of malignant gliomas. To investigate mechanisms modulating PDGFR signaling in gliomagenesis, we employed a Drosophila glioma model and genetic screen to identify genes interacting with Pvr, the fly homolog of PDGFRs. Glial expression of constitutively activated Pvr (λPvr) led to glial over migration and lethality at late larval stage. Among 3316 dsRNA strains crossed against the tester strain, 128 genes shifted lethality to pupal stage, including tetraspanin 2A (tsp2A). In a second step knockdown of all Drosophila tetraspanins was investigated. Of all tetraspanin dsRNA strains only knockdown of tsp2A partially rescued the Pvr-induced phenotype. Human CD9 (TSPAN29/MRP-1), a close homolog of tsp2A, was found to be expressed in glioma cell lines A172 and U343MG as well as in the majority of glioblastoma samples (16/22, 73 %). Furthermore, in situ proximity ligation assay revealed close association of CD9 with PDGFR α and β. In U343MG cells, knockdown of CD9 blocked PDGF-BB stimulated migration. In conclusion, modulation of PDGFR signaling by CD9 is evolutionarily conserved from Drosophila glia to human glioma and plays a role in glia migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.