Electronic cigarettes (e-cigarettes) are advertised as being safer than tobacco cigarettes products as the chemical compounds inhaled from e-cigarettes are believed to be fewer and less toxic than those from tobacco cigarettes. Therefore, continuous careful monitoring and risk management of e-cigarettes should be implemented, with the aim of protecting and promoting public health worldwide. Moreover, basic scientific data are required for the regulation of e-cigarette. To date, there have been reports of many hazardous chemical compounds generated from e-cigarettes, particularly carbonyl compounds such as formaldehyde, acetaldehyde, acrolein, and glyoxal, which are often found in e-cigarette aerosols. These carbonyl compounds are incidentally generated by the oxidation of e-liquid (liquid in e-cigarette; glycerol and glycols) when the liquid comes in contact with the heated nichrome wire. The compositions and concentrations of these compounds vary depending on the type of e-liquid and the battery voltage. In some cases, extremely high concentrations of these carbonyl compounds are generated, and may contribute to various health effects. Suppliers, risk management organizations, and users of e-cigarettes should be aware of this phenomenon.
Carbonyl compounds in E-cigarette smoke mist were measured using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. A total of 363 E-cigarettes (13 brands) were examined. Four of the 13 E-cigarette brands did not generate any carbonyl compounds, while the other nine E-cigarette brands generated various carbonyl compounds. However, the carbonyl concentrations of the E-cigarette products did not show typical distributions, and the mean values were largely different from the median values. It was elucidated that E-cigarettes incidentally generate high concentrations of carbonyl compounds.
The 4×1 (respectively 1×1) (001) GaN surfaces obtained when molecular-beam-epitaxy (MBE) growth is carried out on (001) cubic SiC were exposed to an As background pressure in the MBE chamber: The reconstructions rapidly and irreversibly changed to 2×2 [respectively c(2×2)] as usually observed for GaN growth on (001) GaAs. The usual reversible 2×2/c(2×2) transitions were consequently observed when bringing the Ga flux up or down. The respective positions for the 4×1/1×1 and 2×2/c(2×2) transitions were worked out as a function of the growth parameters. These observations indicate that the 2×2 and c(2×2) GaN surface reconstructions are mediated by As atoms which we tentatively assign to a surfactant effect. A simple structural model involving As dimers is proposed that accounts for Ga coverages of 0.5 and 1 monolayer for the 2×2 and c(2×2) growth regimes, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.