It has been reported that gut probiotics play a major role in the bidirectional communication between the gut and the brain. Probiotics may be essential to people with depression, which remains a global health challenge, as depression is a metabolic brain disorder. However, the efficacy of probiotics for depression is controversial. This study aimed to systematically review the existing evidence on the effect of probiotics-based interventions on depression. Randomized, controlled trials, identified through screening multiple databases and grey literature, were included in the meta-analysis. The meta-analysis was performed using Review Manager 5.3 software using a fixed-effects model. The meta-analysis showed that probiotics significantly decreased the depression scale score (MD (depressive disorder) = −0.30, 95% CI (−0.51–−0.09), p = 0.005) in the subjects. Probiotics had an effect on both the healthy population (MD = −0.25, 95% CI (−0.47–−0.03), p = 0.03) and patients with major depressive disorder (MDD) (MD = −0.73, 95% CI (−1.37–−0.09), p = 0.03). Probiotics had an effect on the population aged under 60 (MD = −0.43, 95% CI (−0.72–−0.13), p = 0.005), while it had no effect on people aged over 65 (MD = −0.18, 95% CI (−0.47–0.11), p = 0.22). This is the first systematic review and meta-analysis with the goal of determining the effect of probiotics on depression. We found that probiotics were associated with a significant reduction in depression, underscoring the need for additional research on this potential preventive strategy for depression.
Alterations in stiffness of the trabecular meshwork (TM) may play an important role in primary open-angle glaucoma (POAG), the second leading cause of blindness. Specifically, certain data suggest an association between elevated intraocular pressure (IOP) and increased TM stiffness; however, the underlying link between TM stiffness and IOP remains unclear and requires further study. We here first review the literature on TM stiffness measurements, encompassing various species and based on a number of measurement techniques, including direct approaches such as atomic force microscopy (AFM) and uniaxial tension tests, and indirect methods based on a beam deflection model. We also briefly review the effects of several factors that affect TM stiffness, including lysophospholipids, rho-kinase inhibitors, cytoskeletal disrupting agents, dexamethasone (DEX), transforming growth factor-β (TGF-β), nitric oxide (NO) and cellular senescence. We then describe a method we have developed for determining TM stiffness measurement in mice using a cryosection/AFM-based approach, and present preliminary data on TM stiffness in C57BL/6J and CBA/J mouse strains. Finally, we investigate the relationship between TM stiffness and outflow facility between these two strains. The method we have developed shows promise for further direct measurements of mouse TM stiffness, which may be of value in understanding mechanistic relations between outflow facility and TM biomechanical properties.
SignificanceGlaucoma is the leading cause of irreversible blindness worldwide. The primary and only modifiable risk factor for the development of glaucoma is elevated intraocular pressure (IOP), and lowering IOP effectively slows glaucomatous disease progression. Unfortunately, the majority of available treatments do not target, or intentionally bypass, the diseased and stiffened glaucomatous outflow tissues responsible for IOP elevation. We recently established that conventional outflow tissue stiffness reflects tissue function. Therefore, detection of outflow tissue stiffness using noncontact, noninvasive optical coherence tomography, as we here demonstrate in an animal model of glaucoma, represents a valuable tool for assessing outflow tissue functional status. Such technology has the potential to monitor recently approved treatments targeting the outflow tissues, and to inform glaucoma surgery decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.