BackgroundOdorant binding proteins (OBPs) play important roles in insect olfaction. The brown planthopper (BPH), Nilaparvata lugens Stål (Delphacidae, Auchenorrhyncha, Hemiptera) is one of the most important rice pests. Its monophagy (only feeding on rice), wing form (long and short wing) variation, and annual long distance migration (seeking for rice plants of high nutrition) imply that the olfaction would play a central role in BPH behavior. However, the olfaction related proteins have not been characterized in this insect.Methodology/Principal FindingsFull length cDNA of three OBPs were obtained and distinct expression profiles were revealed regarding to tissue, developmental stage, wing form and gender for the first time for the species. The results provide important clues in functional differentiation of these genes. Binding assays with 41 compounds demonstrated that NlugOBP3 had markedly higher binding ability and wider binding spectrum than the other two OBPs. Terpenes and Ketones displayed higher binding while Alkanes showed no binding to the three OBPs. Focused on NlugOBP3, RNA interference experiments showed that NlugOBP3 not only involved in nymph olfaction on rice seedlings, but also had non-olfactory functions, as it was closely related to nymph survival.Conclusions
NlugOBP3 plays important roles in both olfaction and survival of BPH. It may serve as a potential target for developing behavioral disruptant and/or lethal agent in N. lugens.
Disseminated superficial actinic porokeratosis (DSAP) is an autosomal dominantly inherited epidermal keratinization disorder whose etiology remains unclear. We performed exome sequencing in one unaffected and two affected individuals from a DSAP family. The mevalonate kinase gene (MVK) emerged as the only candidate gene located in previously defined linkage regions after filtering against existing SNP databases, eight HapMap exomes and 1000 Genomes Project data and taking into consideration the functional implications of the mutations. Sanger sequencing in 57 individuals with familial DSAP and 25 individuals with sporadic DSAP identified MVK mutations in 33% and 16% of these individuals (cases), respectively. All 14 MVK mutations identified in our study were absent in 676 individuals without DSAP. Our functional studies in cultured primary keratinocytes suggest that MVK has a role in regulating calcium-induced keratinocyte differentiation and could protect keratinocytes from apoptosis induced by type A ultraviolet radiation. Our results should help advance the understanding of DSAP pathogenesis.
Although many studies on lepidopteran pheromone-binding proteins (PBPs)/ general odorant-binding proteins (GOBPs) have been reported, the functional differentiation within and between the two odorant-binding protein (OBP) subclasses is still elusive. Here we conducted a comparative study on three SexiPBPs and two SexiGOBPs in Spodoptera exigua. Results showed that all five SexiPBP/GOBP genes have the same intron numbers and conserved exon/intron splice sites. Reverse transcription PCR results showed that these five SexiPBP/GOBPs were primarily expressed in antennae of both sexes and some were also detected in other tissues. Further, quantitative real-time PCR showed that five SexiPBP/GOBPs had different sex-biased expression patterns, with PBP1 being highly male-biased (5.96-fold difference) and PBP3 slightly female-biased (2.43-fold difference), while PBP2 and two GOBPs were approximately sex-equivalent (the absolute value<1.90-fold difference). Binding assays showed that all three SexiPBPs could bind all six sex pheromone components, but SexiPBP1 had much higher affinities [dissociation constant (Ki ) <1.10 μM] than did the other two SexiPBPs (Ki >1.20 μM). Very intriguingly, SexiGOBP2 displayed even stronger binding to five sex pheromone components (Ki <0.40 μM) than SexiPBP1. In contrast, SexiGOBP1 only exhibited weak binding to three alcohol-pheromone components. Similar results were obtained for tested pheromone analogues. In addition, each of SexiPBP/GOBPs selectively bound some plant odorants with considerable affinities (Ki <10.0 μM). Taken together, of the three SexiPBPs, SexiPBP1 may play the most important role in female sex pheromone reception, and additionally all three SexiPBPs can detect some plant odorants, while SexiGOBP2 may be involved in the detection of female sex pheromones in addition to plant odorants. The results strongly suggest functional differentiation within and between the two OBP sub-classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.