The dressing material of a wound plays a key role since bacteria can live in the bandage and keep re-infecting the wound, thus a bandage is needed that blocks biofilm in the bandage. Using an in vivo wound biofilm model, we examined the effectiveness of an organo-selenium (OS)-coated polyester dressing to inhibit the growth of bacteria in a wound. Staphylococcus aureus (as well as MRSA, Methicillin resistant Staph aureus), Stenotrophomonas maltophilia, Enterococcus faecalis, Staphylococcus epidermidis, and Pseudomonas aeruginosa were chosen for the wound infection study. All the bacteria were enumerated in the wound dressing and in the wound tissue under the dressing. Using colony-forming unit (CFU) assays, over 7 logs of inhibition (100%) was found for all the bacterial strains on the material of the OS-coated wound dressing and in the tissue under that dressing. Confocal laser scanning microscopy along with IVIS spectrum in vivo imaging confirmed the CFU results. Thus, the dressing acts as a reservoir for a biofilm, which causes wound infection. The same results were obtained after soaking the dressing in PBS at 37 °C for three months before use. These results suggest that an OS coating on polyester dressing is both effective and durable in blocking wound infection.
Background: It is necessary to develop new strategies to protect against bacteria such as Streptococcus mutans, Streptococcus sanguis, and Streptococcus salivarius, which contribute to tooth decay and plaque formation. Our current study investigated the efficacy of a colloidal silver gel in inhibiting biofilm formation by these principal oral bacteria, in vitro. The aim of this study was to assess the efficacy of a colloidal silver gel formulation for inhibiting bacterial biofilm formation (Ag-gel) by the principal bacteria that cause plaque formation and tooth decay. Methods: The effect of Ag-gel on viability of S. mutans, S. sanguis, and S. salivarius was assessed by quantifying their colony forming units (CFU) in presence or absence of the test gel. The effect of this formulation on biofilm-forming ability of these bacteria was studied through scanning electron microscopy. Results: Using the CFU assays, over 6 logs of inhibition (100%) were found for S. mutans, S. sanguis, and S. salivarius for the Ag-gel-treated bacteria when compared with the control gel. In addition, the Ag-gel also inhibited biofilm formation by these three bacteria mixed together. These results were confirmed by scanning electron microscopy. Conclusions: The Ag-gel was effective in preventing biofilm formation by S. mutans, S. sanguis, and S. salivarius. This Ag-gel should be tested for the ability to block plaque formation in the mouth, through its use as a tooth paste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.