INTRODUCTION
Gastric bypass surgery (GBP) leads to sustained weight loss and significant improvement in type 2 diabetes (T2DM). Bile acids (BAs), signaling molecules which influence glucose metabolism, are a potential mediator for the improvement in T2DM after GBP. This study sought to investigate the effect of GBP on BA levels and composition in individuals with T2DM.
METHODS
Plasma BA levels and composition and fibroblast growth factor (FGF)-19 levels were measured during fasting and in response to an oral glucose load before and at 1 month and 2 years post GBP in 13 severely obese women with T2DM.
RESULTS
A striking temporal change in BA levels and composition was observed after GBP. During the fasted state, BA concentrations were generally reduced at 1 month, but increased 2 years post GBP. Postprandial BA levels were unchanged 1 month post GBP, but an exaggerated postprandial peak was observed 2 years after the surgery. A significant increase in the 12α-hydroxylated/non12α-hydroxylated BA ratio during fasting and postprandially at 2 years, but not 1 month, post GBP was observed. Significant correlations between BAs vs FGF-19, body weight, the incretin effect and peptide YY (PYY) were also found.
CONCLUSIONS
This study provides evidence that GBP temporally modifies the concentration and composition of circulating BAs in individuals with T2DM, and suggests that BAs may be linked to the improvement in T2DM after GBP.
OBJECTIVETo characterize the magnitude and variance of the change of glucose and glucagon-like peptide-1 (GLP-1) concentrations, and to identify determinants of glucose control up to 2 years after gastric bypass (GBP).RESEARCH DESIGN AND METHODSGlucose and GLP-1 concentrations were measured during an oral glucose challenge before and 1, 12, and 24 months after GBP in 15 severely obese patients with type 2 diabetes.RESULTSGlucose area under the curve from 0 to 180 min (AUC0–180) started decreasing in magnitude (P < 0.05) 1 month after surgery. GLP-1 AUC0–180 increased in magnitude 1 month after GBP (P < 0.05), with increased variance only after 1 year (Pσ2 ≤ 0.001). GLP-1 AUC0–180 was positively associated with insulin AUC0–180 (P = 0.025).CONCLUSIONSThe increase in variance of GLP-1 at 1 and 2 years after GBP suggests mechanisms other than proximal gut bypass to explain the enhancement of GLP-1 secretion. The association between GLP-1 and insulin concentrations supports the idea that the incretins are involved in glucose control after GBP.
Purpose
Weight regain after gastric bypass (GBP) can be associated with a gastrogastric fistula (GGF), in which a channel forms between the gastric pouch and gastric remnant, allowing nutrients to pass through the ‘old route’ rather than bypassing the duodenum. To further understand the mechanisms by which GGF may lead to weight regain, we investigated gut hormone levels in GBP patients with a GGF, before and after repair.
Materials and Methods
Seven post-GBP subjects diagnosed with GGF were studied before and 4 months after GGF repair. Another cohort of 22 GBP control subjects without GGF complication were studied before and 1 year post-GBP. All subjects underwent a 50g oral glucose tolerance test and blood was collected from 0-120minutes for glucose, insulin, ghrelin, PYY3-36, GIP, and GLP-1 levels.
Results
Four months after GGF repair subjects lost 6.0 ±3.9kg and had significantly increased postprandial PYY3-36 levels. After GGF repair, fasting and postprandial ghrelin levels decreased and were strongly correlated with weight loss. The insulin response to glucose also tended to be increased after GGF repair, however no concomitant increase in GLP-1 was observed. Compared to the post-GBP group, GLP-1 and PYY3-36 levels were significantly lower before GGF repair; however, after GGF repair, PYY3-36 levels were no longer lower than the post-GBP group.
Conclusions
These data utilize the GGF model to highlight the possible role of duodenal shunting as a mechanism of sustained weight loss after GBP, and lend support to the potential link between blunted satiety peptide release and weight regain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.