The previous paper reported on the synthesis and pharmacological evaluation of N-(6-amino-3-pyridyl)-N'-bicycloalkyl-N"-cyanoguanidine derivatives, from among which three compounds were selected as potent potassium-channel openers. In the present study, selected compounds were tested for antagonism of potassium-induced contraction of rat aorta, hypotensive activity in normotensive rats, and diuretic activity in spontaneously hypertensive rats. This led to further evaluation of compound (+/-)-10 and selection of (+)-N-(6-amino-3-pyridyl)-N'- [(1S,2R,4R)-bicyclo- [2.2.1]hept-2-yl]-N"-cyanoguanidine ((+)-10) (AL0670) for development as an antihypertensive agent. Although AL0670 is regarded as a pinacidil-type K(+)-channel opener, it showed different pharmacological and conformational profiles from pinacidil.
ABSTRACT:Raloxifene is extensively glucuronidated in humans, effectively reducing its oral bioavailability (2%). It was also reported to be glucuronidated in preclinical animals, but its effects on the oral bioavailability have not been fully elucidated. In the present study, raloxifene and its glucuronides in the portal and systemic blood were monitored in Gunn rats deficient in UDP-glucuronosyltransferase (UGT) 1A, Eisai hyperbilirubinemic rats (EHBRs), which hereditarily lack multidrug resistance-associated protein (MRP) 2, and wild-type rats after oral administration. The in vitro-in vivo correlation (IVIVC) of four UGT substrates (raloxifene, biochanin A, gemfibrozil, and mycophenolic acid) in rats was also evaluated. In Gunn rats, the product of fraction absorbed and intestinal availability and hepatic availability of raloxifene were 0.63 and 0.43, respectively; these values were twice those observed in wild-type Wistar rats, indicating that raloxifene was glucuronidated in both the liver and intestine. The ratio of glucuronides to unchanged drug in systemic blood was substantially higher in EHBRs (129-fold) than in the wild-type Sprague-Dawley rats (10-fold), suggesting the excretion of raloxifene glucuronides caused by MRP2. The IVIVC of the other UGT substrates in rats displayed a good relationship, but the oral clearance values of raloxifene and biochanin A, which were extensively glucuronidated by rat intestinal microsomes, were higher than the predicted clearances using rat liver microsomes, suggesting that intestinal metabolism may be a great contributor to the first-pass effect. Therefore, evaluation of intestinal and hepatic glucuronidation for new chemical entities is important to improve their pharmacokinetic profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.