We describe a method, based on pressure-assisted capillary electrophoresis coupled to electrospray ionization mass spectrometry (PACE/ESI-MS), that allows the simultaneous and quantitative analysis of multivalent anions, such as citrate isomers, nucleotides, nicotinamide-adenine dinucleotides, and flavin adenine dinucleotide, and coenzyme A (CoA) compounds. Key to the analysis was using a noncharged polymer, poly(dimethylsiloxane), coated to the inner surface of the capillary to prevent anionic species from adsorbing onto the capillary wall. It was also necessary to drive a constant liquid flow toward the MS by applying air pressure to the inlet capillary during electrophoresis to maintain a conductive liquid junction between the capillary and the electrospray needle. Although theoretical plates were inferior to those obtained by CE/ESI-MS using a cationic polymer-coated capillary, the PACE/ESI-MS method improved reproducibility and sensitivity of these anions. Eighteen anions were separated by PACE and selectively detected by a quadrupole mass spectrometer with a sheath-flow electrospray ionization interface. The relative standard deviations (n = 6) of the method were better than 0.6% for migration times and between 1.4% and 6.2% for peak areas. The detection limits for these species were between 0.4 and 3.7 micromol/L with pressure injection of 50 mbar for 30 s (30 nL), that is, mass detection limits calculated in the range from 12 to 110 fmol at a signal-to-noise ratio of 3. The utility of the method was demonstrated by analysis of citrate isomers, nucleotides, dinucleotides, and CoA compounds extracted from Bacillus subtilis cells.
Loss-of-function mutations in CHST14, dermatan 4-O-sulfotransferase 1 (D4ST1) deficiency, have recently been found to cause adducted thumb-clubfoot syndrome (ATCS; OMIM#601776) and a new type of Ehlers-Danlos syndrome (EDS) coined as EDS Kosho Type (EDSKT) [Miyake et al., 2010], as well as a subset of kyphoscoliosis type EDS without lysyl hydroxylase deficiency (EDS VIB) coined as musculocontractural EDS (MCEDS) [Malfait et al., 2010]. Lack of detailed clinical information from later childhood to adulthood in ATCS and lack of detailed clinical information from birth to early childhood in EDSKT and MCEDS have made it difficult to determine whether these disorders would be distinct clinical entities or a single clinical entity with variable expressions and with different presentations depending on the patients' ages at diagnosis. We present detailed clinical findings and courses of two additional unrelated patients, aged 2 years and 6 years, with EDSKT with a comprehensive review of 20 reported patients with D4ST1 deficiency, which supports the notion that these disorders constitute a clinically recognizable form of EDS. The disorder, preferably termed D4ST1-deficient EDS, is characterized by progressive multisystem fragility-related manifestations (joint dislocations and deformities, skin hyperextensibility, bruisability, and fragility; recurrent large subcutaneous hematomas, and other cardiac valvular, respiratory, gastrointestinal, and ophthalmological complications) resulting from impaired assembly of collagen fibrils, as well as various malformations (distinct craniofacial features, multiple congenital contractures, and congenital defects in cardiovascular, gastrointestinal, renal, ocular, and central nervous systems) resulting from inborn errors of development.
The relationship between sulfate-reduction and the oxidation of various intermediates of anaerobic digestion of animal waste was investigated by incubating cattle waste anaerobically in the presence or absence of sulfate. Propionate oxidation was strongly accelerated by the addition of sulfate, but acetate oxidation was not affected. Lactate, butyrate, and ethanol were oxidized rather rapidly irrespective of the presence of sulfate. Hydrogen gas stimulated both sulfate-reduction and methanogenesis, but it delayed the oxidation of fatty acids. When methanogenesis was inhibited by the addition of chloroform in the presence of sulfate, the sulfate was ordinarily reduced, while the acetate concentration increased. It was concluded that the contribution of acetate as an electron donor for sulfatereduction was very low in cattle waste. Sulfate-reduction in pig waste and a ditch sediment was also investigated for comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.