A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological datasets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here, we performed a genome-wide association study (GWAS) meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single nucleotide polymorphisms (SNPs). We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 1012–4. We devised an in-silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci (cis-eQTL)6, and pathway analyses7–9 – as well as novel methods based on genetic overlap with human primary immunodeficiency (PID), hematological cancer somatic mutations and knock-out mouse phenotypes – to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
Rheumatoid arthritis is a common autoimmune disease characterized by chronic inflammation. We report a meta-analysis of genome-wide association studies (GWAS) in a Japanese population including 4,074 individuals with rheumatoid arthritis (cases) and 16,891 controls, followed by a replication in 5,277 rheumatoid arthritis cases and 21,684 controls. Our study identified nine loci newly associated with rheumatoid arthritis at a threshold of P < 5.0 × 10(-8), including B3GNT2, ANXA3, CSF2, CD83, NFKBIE, ARID5B, PDE2A-ARAP1, PLD4 and PTPN2. ANXA3 was also associated with susceptibility to systemic lupus erythematosus (P = 0.0040), and B3GNT2 and ARID5B were associated with Graves' disease (P = 3.5 × 10(-4) and 2.9 × 10(-4), respectively). We conducted a multi-ancestry comparative analysis with a previous meta-analysis in individuals of European descent (5,539 rheumatoid arthritis cases and 20,169 controls). This provided evidence of shared genetic risks of rheumatoid arthritis between the populations.
Rheumatoid arthritis is a common autoimmune disease with a complex genetic etiology. Here, through a genome-wide association study of rheumatoid arthritis, we identified a polymorphism in CCR6, the gene encoding chemokine (C-C motif) receptor 6 (a surface marker for Th17 cells) at 6q27, that was associated with rheumatoid arthritis susceptibility and was validated in two independent replication cohorts from Japan (rs3093024, a total of 7,069 individuals with rheumatoid arthritis (cases) and 20,727 controls, overall odds ratio = 1.19, P = 7.7 x 10(-19)). We identified a triallelic dinucleotide polymorphism of CCR6 (CCR6DNP) in strong linkage disequilibrium with rs3093024 that showed effects on gene transcription. The CCR6DNP genotype was correlated with the expression level of CCR6 and was associated with the presence of interleukin-17 (IL-17) in the sera of subjects with rheumatoid arthritis. Moreover, CCR6DNP was associated with susceptibility to Graves' and Crohn's diseases. These results suggest that CCR6 is critically involved in IL-17-driven autoimmunity in human diseases.
Systemic lupus erythematosus (SLE) is an autoimmune disease that causes multiple organ damage. Although recent genome-wide association studies (GWAS) have contributed to discovery of SLE susceptibility genes, few studies has been performed in Asian populations. Here, we report a GWAS for SLE examining 891 SLE cases and 3,384 controls and multi-stage replication studies examining 1,387 SLE cases and 28,564 controls in Japanese subjects. Considering that expression quantitative trait loci (eQTLs) have been implicated in genetic risks for autoimmune diseases, we integrated an eQTL study into the results of the GWAS. We observed enrichments of cis-eQTL positive loci among the known SLE susceptibility loci (30.8%) compared to the genome-wide SNPs (6.9%). In addition, we identified a novel association of a variant in the AF4/FMR2 family, member 1 (AFF1) gene at 4q21 with SLE susceptibility (rs340630; P = 8.3×10−9, odds ratio = 1.21). The risk A allele of rs340630 demonstrated a cis-eQTL effect on the AFF1 transcript with enhanced expression levels (P<0.05). As AFF1 transcripts were prominently expressed in CD4+ and CD19+ peripheral blood lymphocytes, up-regulation of AFF1 may cause the abnormality in these lymphocytes, leading to disease onset.
A polymorphism that up-regulates the expression of Fc receptor-like 3 (FCRL3) gene has recently been described as predisposing for several human autoimmune diseases. FCRL3 is preferentially expressed on B cells and is unique in displaying both an ITAM and an ITIM in the cytosolic domain, suggesting signaling functions. Herein, we show that FCRL3 potentially inhibits BCR-mediated signaling, using murine FcγRIIB/human FCRL3 chimeric protein. Coligation of the chimeric protein with BCR leads to phosphorylation of tyrosine residues in the cytosolic domain. This coligation inhibits cell tyrosine phosphorylation and calcium mobilization in addition to activation-induced cell death mediated by BCR signaling. Mutational analysis showed the tyrosine residues in two potential ITIMs at 662 and 692 offer the main contributions to this inhibition, which is further supported by strong associations of SH-2 domain-containing phosphatases with the following phosphotyrosine motifs: SHIP with the ITIM-like motif at 662; and SHP-1 and -2 with the canonical ITIM at 692. These results, together with previous genetic data, suggest that augmented inhibition of BCR-mediated signaling by FCRL3 with the disease-risk genotype alter the activation threshold and promote tolerance breakdown in B cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.