X-ray imaging is a very important technology in the fields of medical, biological, inspection, material science, etc. However, it is not enough to get the clear X-ray imaging with low absorbance. We have produced a diffraction gratings for obtaining high resolution X-ray phase imaging, such as X-ray Talbot interferometer. In this X-ray Talbot interferometer, diffraction gratings were required to have a fine, high accuracy, high aspect ratio structure. Then, we succeeded to fabricate a high aspect ratio diffraction grating with a pitch of 8 lm and small area using a deep X-ray lithography technique. We discuss that the diffraction gratings having a narrow pitch and an large effective area to obtain imaging size of practical use in medical application. If the pitch of diffraction gratings were narrow, it is expected high resolution imaging for X-ray Talbot interferometer. We succeeded and fabricated the diffraction grating with pitch of 5.3 lm, Au height of 28 lm and an effective area of 60 9 60 mm 2 .
In this paper, the state of art of ultrasonicassisted machining technologies used for fabrication of micro/nano-textured surfaces is reviewed. Diamond machining is the most widely used method in industry for manufacturing precision parts. For fabrication of fine structures on surfaces, conventional diamond machining methods are competitive by considering the precision of structures, but have limitations at machinable structures and machining efficiency, which have been proved to be partly solved by the integration of ultrasonic vibration motion. In this paper, existing ultrasonic-assisted machining methods for fabricating fine surface structures are reviewed and classified, and a rotary ultrasonic texturing (RUT) technology is mainly introduced by presenting the construction of vibration spindles, the texturing principles, and the applications of textured surfaces. Some new ideas and experimental results are presented. Finally, the challenges in using the RUT method to fabricate micro/ nano-textured surfaces are discussed with respect to texturing strategies, machinable structures, and tool wear.
The U-box type ubiquitin ligase PUB44 positively regulates pattern-triggered immunity in rice. Here, we identify PBI1, a protein that interacts with PUB44. Crystal structure analysis indicates that PBI1 forms a four-helix bundle structure. PBI1 also interacts with WRKY45, a master transcriptional activator of rice immunity, and negatively regulates its activity. PBI1 is degraded upon perception of chitin, and this is suppressed by silencing of PUB44 or expression of XopP, indicating that PBI1 degradation depends on PUB44. These data suggest that PBI1 suppresses WRKY45 activity when cells are in an unelicited state, and during chitin signaling, PUB44-mediated degradation of PBI1 leads to activation of WRKY45. In addition, chitin-induced MAP kinase activation is required for WRKY45 activation and PBI1 degradation. These results demonstrate that chitin-induced activation of WRKY45 is regulated by the cooperation between MAP kinase-mediated phosphorylation and PUB44-mediated PBI1 degradation.
The use of conventional X-ray radiography is limited due to weak absorption. This problem is resolved by using phase-sensitive imaging methods to improve the contrast, such as X-ray Talbot interferometry. With a spatially coherent light source and two diffraction gratings for Talbot interferometry, we measured the phase change differential. Using this technique, diffraction gratings were designed to have a fine high-accuracy high-aspect-ratio structure. Then, we fabricated a high-aspect-ratio diffraction grating using a deep X-ray lithography technique. A diffraction grating with a period of 8 µm and a height of about 30 µm was fabricated. This diffraction grating can be used for X-ray phase imaging for X-ray Talbot interferometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.