Among IL-17 families, IL-17A and IL-17F share amino acid sequence similarity and bind to IL-17R type A. IL-17 signaling is implicated in the pathogenesis of various autoimmune diseases, but its role in the regulatory mechanism of extracellular matrix expression and its contribution to the phenotype of systemic sclerosis (SSc) both remain to be elucidated. This study revealed that IL-17A expression was significantly increased in the involved skin and sera of SSc patients, whereas the IL-17F levels did not increase. In contrast, the expression of IL-17R type A in SSc fibroblasts significantly decreased in comparison with that in normal fibroblasts, due to the intrinsic TGF-β1 activation in these cell types. Moreover, IL-17A, not IL-17F, reduced the protein expression of α1(I) collagen and connective tissue growth factor. miR-129-5p, one of the downregulated microRNAs in SSc fibroblasts, increased due to IL-17A and mediated the α1(I) collagen reduction. These results suggest that IL-17A signaling, not IL-17F, has an antifibrogenic effect via the upregulation of miR-129-5p and the downregulation of connective tissue growth factor and α1(I) collagen. IL-17A signaling is suppressed due to the downregulation of the receptor by the intrinsic activation of TGF-β1 in SSc fibroblasts, which may amplify the increased collagen accumulation and fibrosis characteristic of SSc. Increased IL-17A levels in the sera and involved skin of SSc may be due to negative feedback. Clarifying the novel regulatory mechanisms of fibrosis by the cytokine network consisting of TGF-β and IL-17A may lead to a new therapeutic approach for this disease.
Systemic and localized scleroderma (SSc and LSc) is characterized by excessive deposition of collagen and tissue fibrosis in the skin. Although they have fundamental common characteristics including autoimmunity, little is known about the exact mechanism that mediates the excessive collagen expression in these disorders. In the current study, we tried to evaluate the possibility that microRNAs (miRNAs) play some roles in the pathogenesis of fibrosis seen in these diseases. miRNA expression patterns were evaluated by miRNA array analysis, real-time PCR, and in situ hybridization. The function of miRNAs in dermal fibroblasts was assessed using miRNA inhibitors, precursors, or protectors. In the mouse model of bleomycin-induced dermal sclerosis, the overexpression of miRNAs was performed by i.p. miRNA injection. We demonstrated let-7a expression was downregulated in SSc and LSc skin both in vivo and in vitro, compared with normal or keloid skin. The inhibition or overexpression of let-7a in human or mouse skin fibroblasts affected the protein expression of type I collagen or luciferase activity of collagen 3′-untranslated region. Also, we found let-7a was detectable and quantitative in the serum and investigated serum let-7a levels in patients with SSc or LSc. let-7a concentration was significantly decreased in these patients, especially in LSc patients. Moreover, we revealed that the intermittent overexpression of let-7a in the skin by i.p. miRNA injection improved the skin fibrosis induced by bleomycin in mice. Investigation of more detailed mechanisms of miRNA-mediated regulation of collagen expression may lead to new therapeutic approaches against SSc and LSc.
Decreased miR-424 expression and subsequently increased MEK1 or cyclin E1 may play a key role in the pathogenesis of psoriasis. Investigation of the regulatory mechanisms of keratinocyte proliferation by miRNA may lead to new treatments and a disease activity marker.
The increase of miR-92a in SSc may be due to the stimulation of intrinsic TGF-β activation seen in this disease. There is also a possibility that MMP-1 is the target of miR-92a and that increased miR-92a expression therefore plays a role in excessive collagen accumulation in SSc via the down-regulation of MMP-1. Clarifying the role of miRNAs in SSc may result in a better understanding of this disease and the development of new therapeutic approaches.
Angiogenesis plays a crucial role in tumor growth, with an undisputed contribution of resident endothelial cells (EC) to new blood vessels in the tumor. Here, we report the definition of a small population of vascular-resident stem/progenitor-like EC that contributes predominantly to new blood vessel formation in the tumor. Although the surface markers of this population are similar to other ECs, those from the lung vasculature possess colony-forming ability in vitro and contribute to angiogenesis in vivo. These specific ECs actively proliferate in lung tumors, and the percentage of this population significantly increases in the tumor vasculature relative to normal lung tissue. Using genetic recombination and bone marrow transplant models, we show that these cells are phenotypically true ECs and do not originate from hematopoietic cells. After treatment of tumors with antiangiogenic drugs, these specific ECs selectively survived and remained in the tumor. Together, our results established that ECs in the peripheral vasculature are heterogeneous and that stem/progenitor-like ECs play an indispensable role in tumor angiogenesis as EC-supplying cells. The lack of susceptibility of these ECs to antiangiogenic drugs may account for resistance of the tumor to this drug type. Thus, inhibiting these ECs might provide a promising strategy to overcome antiangiogenic drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.