Enhanced activation of cardioprotective signaling pathways by inhibiting myocardial SOCS3 expression prevented LV remodeling after AMI. Our data suggest that myocardial SOCS3 may be a key molecule in the development of LV remodeling after AMI.
Our present study suggests that pioglitazone could attenuate atherosclerotic plaque inflammation in patients with impaired glucose tolerance or in diabetic patients independent of glucose lowering effect. Pioglitazone may be a promising strategy for the treatment of atherosclerotic plaque inflammation in impaired glucose tolerance or diabetic patients. (Detection of Plaque Inflammation and Visualization of Anti-Inflammatory Effects of Pioglitazone on Plaque Inflammation in Subjects With Impaired Glucose Tolerance and Type 2 Diabetes Mellitus by FDG-PET/CT; NCT00722631).
Background: Remote ischemic preconditioning (RIPC) induced by transient limb ischemia is a powerful innate mechanism of cardioprotection against ischemia. Several described mechanisms explain how RIPC may act through neural pathways or humoral factors; however, the mechanistic pathway linking the remote organ to the heart has not yet been fully elucidated. This study aimed to investigate the mechanisms underlying the RIPC-induced production of Janus kinase (JAK)-signal transducer and activator of the transcription (STAT)-activating cytokines and cardioprotection by using mouse and human models of RIPC.
Methods and Results:Screened circulating cardioprotective JAK-STAT-activating cytokines in mice unexpectedly revealed increased serum erythropoietin (EPO) levels after RIP induced by transient ischemia. In mice, RIPC rapidly upregulated EPO mRNA and its main transcriptional factor, hypoxia-inducible factor-1α (HIF1α), in the kidney. Laser Doppler blood flowmetry revealed a prompt reduction of renal blood flow (RBF) after RIPC. RIPC activated cardioprotective signaling pathways and the anti-apoptotic Bcl-xL pathway in the heart, and reduced infarct size. In mice, these effects were abolished by administration of an EPO-neutralizing antibody. Renal nerve denervation also abolished RIPC-induced RBF reduction, EPO production, and cardioprotection. In humans, transient limb ischemia of the upper arm reduced RBF and increased serum EPO levels.
Conclusions:Based on the present data, we propose a novel RIPC mechanism in which inhibition of infarct size by RIPC is produced through the renal nerve-mediated reduction of RBF associated with activation of the HIF1α-EPO pathway.
1558OBA T et al.
Hypoxia Inducible Factor-1α (HIF1α) Immunohistochemical StainingMouse kidneys were harvested 1 h after RIPC. Embedded sections were deparaffinized, and endogenous peroxidase activity was inhibited by treating the sections with 0.3% H2O2 in PBS for 10 min. After several washes with PBS, the sections were incubated for 20 min with blocking solution (Jackson ImmunoResearch) to block non-specific binding, followed by overnight incubation at 4°C with the purified anti-hypoxia inducible factor-1α (HIF1α) antibody (Abcam). Subsequently, the sections were incubated with an alkaline phosphatase-conjugated goat anti-rabbit IgG antibody for 30 min. Signal amplification was achieved by incubating the slides for 30 min with Vectastain Elite Avidin-Biotin Complex solution (Vectastain ABC Kit, Vector), followed by incubation with Vectastain diaminobenzidine solution as the chromagen marker (Dako). 28 For a negative staining control, goat serum was used in place of the HIF1α antibody.
Renal Blood Flow (RBF) MonitoringMouse RBF was measured at 0 min and every 2 min during and after RIPC induction, using a laser Doppler blood flow imager (Laser Doppler Perfusion Imager System, moorLDI TMMark 2, Moor Instruments). Before RBF scanning in the right kidney, mice were placed on a heating pad at 37°C to minimize temperature variations. In control mice, a sham...
Myocardial ischemia reperfusion injury (IRI) adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT) 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS)-3, an intrinsic negative feedback regulator of the Janus kinase (JAK)-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT–activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO). The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.