We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire.
The anopheline mosquito is the target in most malaria control programs, primarily through the use of residual insecticides. A mosquito was studied that is refractory to most species of malaria through a genetically controlled mechanism. A strain of Anopheles gambiae, which was selected for complete refractoriness to the simian malaria parasite Plasmodium cynomolgi, also has varying degrees of refractoriness to most other malaria species examined, including the human parasites P. falciparum, P. ovale, and P. vivax for which this mosquito is the principal African vector. Furthermore, the refractoriness extends to other subhuman primate malarias, to rodent malaria, and to avian malaria. Refractoriness is manifested by encapsulation of the malaria ookinete after it completes its passage through the mosquito midgut, approximately 16 to 24 hours after ingestion of an infective blood meal. Fully encapsulated ookinetes show no abnormalities in parasite organelles, suggesting that refractoriness is due to an enhanced ability of the host to recognize the living parasite rather than to a passive encapsulation of a dead or dying parasite. Production of fully refractory and fully susceptible mosquito strains was achieved through a short series of selective breeding steps. This result indicates a relatively simple genetic basis for refractoriness. In addition to the value these strains may serve in general studies of insect immune mechanisms, this finding encourages consideration of genetic manipulation of natural vector populations as a malaria control strategy.
The sustainability of malaria control in Africa is threatened by the rise of insecticide resistance in Anopheles mosquitoes that transmit the disease1. To gain a deeper understanding of how mosquito populations are evolving, we sequenced the genomes of 765 specimens of Anopheles gambiae and Anopheles coluzzii sampled from 15 locations across Africa, identifying over 50 million single nucleotide polymorphisms within the accessible genome. These data revealed complex population structure and patterns of gene flow, with evidence of ancient expansions, recent bottlenecks, and local variation in effective population size. Strong signals of recent selection were observed in insecticide resistance genes, with multiple sweeps spreading over large geographical distances and between species. The design of novel tools for mosquito control using gene drive will need to take account of high levels of genetic diversity in natural mosquito populations.
We surveyed an Anopheles gambiae population in a West African malaria transmission zone for naturally occurring genetic loci that control mosquito infection with the human malaria parasite, Plasmodium falciparum. The strongest Plasmodium resistance loci cluster in a small region of chromosome 2L and each locus explains at least 89% of parasite-free mosquitoes in independent pedigrees. Together, the clustered loci form a genomic Plasmodium-resistance island that explains most of the genetic variation for malaria parasite infection of mosquitoes in nature. Among the candidate genes in this chromosome region, RNA interference knockdown assays confirm a role in Plasmodium resistance for Anopheles Plasmodium-responsive leucine-rich repeat 1 (APL1), encoding a leucine-rich repeat protein that is similar to molecules involved in natural pathogen resistance mechanisms in plants and mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.