Dicetyl phosphate-tetraethylenepentamine (DCP-TEPA) conjugate was newly synthesized and formed into liposomes for efficient siRNA delivery. Formulation of DCP-TEPA-based polycation liposomes (TEPA-PCL) complexed with siRNA was examined by performing knockdown experiments using stable EGFP-transfected HT1080 human fibrosarcoma cells and siRNA for GFP. An adequate amount of DCP-TEPA in TEPA-PCL and N/P ratio of TEPA-PCL/siRNA complexes were determined based on the knockdown efficiency. Then, the biodistribution of TEPA-PCL modified with poly(ethylene glycol) (PEG) was examined in BALB/c mice. As a result, TEPA-PCL modified with PEG6000 avoided reticuloendothelial system uptake and showed long circulation in the bloodstream. On the other hand, PEGylation of TEPA-PCL/siRNA complexes caused dissociation of a portion of the siRNA from the liposomes. However, we found that the use of cholesterol-conjugated siRNA improved the interaction between TEPA-PCL and siRNA, which allowed PEGylation of TEPA-PCL/siRNA complexes without siRNA dissociation. In addition, TEPA-PCL complexed with cholesterol-conjugated siRNA showed potent knockdown efficiency in stable luciferase-transfected B16-F10 murine melanoma cells. Finally, the biodistribution of cholesterol-conjugated siRNA formulated in PEGylated TEPA-PCL was examined by performing near-infrared fluorescence imaging in Colon26 NL-17 murine carcinoma-bearing mice. Our results showed that tumor targeting with siRNA via systemic administration was achieved by using PEGylated TEPA-PCL combined with active targeting with Ala-Pro-Arg-Pro-Gly, a peptide used for targeting angiogenic endothelium.
Positron emission tomography (PET) is a noninvasive imaging technology that enables the determination of biodistribution of positron emitter-labeled compounds. Lipidic nanoparticles are useful for drug delivery system (DDS), including the artificial oxygen carriers. However, there has been no appropriate method to label preformulated DDS drugs by positron emitters. We have developed a rapid and efficient labeling method for lipid nanoparticles and applied it to determine the movement of liposome-encapsulated hemoglobin (LEH). Distribution of LEH in the rat brain under ischemia was examined by a small animal PET with an enhanced resolution. While the blood flow was almost absent in the ischemic region observed by [(15)O]H(2)O imaging, distribution of (18)F-labeled LEH in the region was gradually increased during 60-min dynamic PET scanning. The results suggest that LEH deliver oxygen even into the ischemic brain from the periphery toward the core of ischemia. The real-time observation of flow pattern, deposition, and excretion of LEH in the ischemic rodent brain was possible by the new methods of positron emitter labeling and PET system with a high resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.