Glutathione (GSH) is a valuable tri-peptide that is widely used in the pharmaceutical, food, and cosmetic industries. Glutathione is produced industrially by fermentation using Saccharomyces cerevisiae. In this study, we demonstrated that engineering in sulfate assimilation metabolism can significantly improve GSH production. The intracellular GSH content of MET14 and MET16 over-expressing strains increased up to 1.2 and 1.4-fold higher than that of the parental strain, respectively, whereas those of APA1 and MET3 overexpressing strains decreased. Especially, in the MET16 overexpressing strain, the volumetric GSH concentration was up to 1.7-fold higher than that of the parental strain as a result of the synergetic effect of the increases in the cell concentration and the intracellular GSH content. Additionally, combinatorial mutant strains that had been engineered to contain both the sulfur and the GSH synthetic metabolism synergistically increased the GSH production. External addition of cysteine to S. cerevisiae is well known as a way to increase the intracellular GSH content; however, it results a decrease in cell growth. This study showed that the engineering of sulfur metabolism in S. cerevisiae proves more valuable than addition of cysteine as a way to boost GSH production due to the increases in both the intracellular GSH content and the cell growth.
Glutathione is a valuable tripeptide that is widely used in the pharmaceutical, food, and cosmetic industries. Intracellular glutathione exists in two forms, reduced glutathione (GSH) and oxidized glutathione (GSSG). Most of the glutathione produced by fermentation using yeast is in the GSH form because intracellular GSH concentration is higher than GSSG concentration. However, the stability of GSSG is higher than GSH, which makes GSSG more advantageous for industrial production and storage after extraction. In this study, an oxidized glutathione fermentation method using Saccharomyces cerevisiae was developed by following three metabolic engineering steps. First, over-expression of the glutathione peroxidase 3 (GPX3) gene increased the GSSG content better than over-expression of other identified peroxidase (GPX1 or GPX2) genes. Second, the increase in GSSG brought about by GPX3 over-expression was enhanced by the over-expression of the GSH1/GSH2 genes because of an increase in the total glutathione (GSH + GSSG) content. Finally, after deleting the glutathione reductase (GLR1) gene, the resulting GPX3/GSH1/GSH2 over-expressing ΔGLR1 strain yielded 7.3-fold more GSSG compared with the parental strain without a decrease in cell growth. Furthermore, use of this strain also resulted in an enhancement of up to 1.6-fold of the total glutathione content compared with the GSH1/GSH2 over-expressing strain. These results indicate that the increase in the oxidized glutathione content helps to improve the stability and total productivity of glutathione.
A novel extracellular glutathione fermentation method using engineered Saccharomyces cerevisiae was developed by following three steps. First, a platform host strain lacking the glutathione degradation protein and glutathione uptake protein was constructed. This strain improved the extracellular glutathione productivity by up to 3.2-fold compared to the parental strain. Second, the ATP-dependent permease Adp1 was identified as a novel glutathione export ABC protein (Gxa1) in S. cerevisiae based on the homology of the protein sequence with that of the known human glutathione export ABC protein (ABCG2). Overexpression of this GXA1 gene improved the extracellular glutathione production by up to 2.3-fold compared to the platform host strain. Finally, combinatorial overexpression of the GXA1 gene and the genes involved in glutathione synthesis in the platform host strain increased the extracellular glutathione production by up to 17.1-fold compared to the parental strain. Overall, the metabolic engineering of the glutathione synthesis, degradation, and transport increased the total (extracellular + intracellular) glutathione production. The extracellular glutathione fermentation method developed in this study has the potential to overcome the limitations of the present intracellular glutathione fermentation process in yeast.
We developed a novel enzymatic glutathione (GSH) production system using Saccharomyces cerevisiae as a whole-cell biocatalyst, and improved its GSH productivity by metabolic engineering. We demonstrated that the metabolic engineering of GSH pathway and ATP regeneration can significantly improve GSH productivity by up to 1.7-fold higher compared with the parental strain, respectively. Furthermore, the combination of both improvements in GSH pathway and ATP regeneration is more effective (2.6-fold) than either improvement individually for GSH enzymatic production using yeast. The improved whole-cell biocatalyst indicates its great potential for applications to other kinds of ATP-dependent bioproduction.
Glutathione is a valuable tripeptide widely used in the pharmaceutical, food, and cosmetic industries. In industrial fermentation, glutathione is currently produced primarily using the yeast Saccharomyces cerevisiae. Intracellular glutathione exists in two forms; the majority is present as reduced glutathione (GSH) and a small amount is present as oxidized glutathione (GSSG). However, GSSG is more stable than GSH and is a more attractive form for the storage of glutathione extracted from yeast cells after fermentation. In this study, intracellular GSSG content was improved by engineering thiol oxidization metabolism in yeast. An engineered strain producing high amounts of glutathione from over-expression of glutathione synthases and lacking glutathione reductase was used as a platform strain. Additional over-expression of thiol oxidase (1.8.3.2) genes ERV1 or ERO1 increased the GSSG content by 2.9-fold and 2.0-fold, respectively, compared with the platform strain, without decreasing cell growth. However, over-expression of thiol oxidase gene ERV2 showed almost no effect on the GSSG content. Interestingly, ERO1 over-expression did not decrease the GSH content, raising the total glutathione content of the cell, but ERV1 over-expression decreased the GSH content, balancing the increase in the GSSG content. Furthermore, the increase in the GSSG content due to ERO1 over-expression was enhanced by additional over-expression of the gene encoding Pdi1, whose reduced form activates Ero1 in the endoplasmic reticulum. These results indicate that engineering the thiol redox metabolism of S. cerevisiae improves GSSG and is critical to increasing the total productivity and stability of glutathione.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.