Murine models are widely used to explore host-microbe interactions because of the challenges and limitations inherent to human studies. However, microbiome studies in murine models are not without their nuances. Inter-individual variations in gut microbiota are frequent even in animals housed within the same room. We therefore sought to find an efficient and effective standard operating procedure (SOP) to minimize these effects to improve consistency and reproducibility in murine microbiota studies. Mice were housed in a single room under specific-pathogen free conditions. Soiled cage bedding was routinely mixed weekly and distributed among all cages from weaning (three weeks old) until the onset of the study. Females and males were separated by sex and group-housed (up to five mice/cage) at weaning. 16S rRNA gene analyses of fecal samples showed that this protocol significantly reduced pre-study variability of gut microbiota amongst animals compared to other conventional measures used to normalize microbiota when large experimental cohorts have been required. A significant and consistent effect size was observed in gut microbiota when mice were switched from regular chow to purified diet in both sexes. However, sex and aging appeared to be independent drivers of gut microbial assemblage and should be taken into account in studies of this nature. In summary, we report a practical and effective pre-study SOP for normalizing the gut microbiome of murine cohorts that minimizes inter-individual variability and resolves co-housing problems inherent to male mice. This SOP may increase quality, rigor, and reproducibility of data acquisition and analysis.
Neonatal Fc receptors for immunoglobulin (Ig)G (FcRn) assume a central role in regulating host IgG levels and IgG transport across polarized epithelial barriers. We have attempted to elucidate the contribution of FcRn in controlling Helicobacter infection in the stomach. C57BL/6J wild-type or FcRn−/− mice were infected with Helicobacter heilmannii, and gastric lesions, bacterial load and the levels of antigen-specific IgG in serum and gastric juice were analyzed. The elevated levels of anti-H. heimannii IgG in gastric juice were observed exclusively in wild-type mice but not in FcRn−/− mice. In contrast, an increase in lymphoid follicles and bacterial loads along with deeper gastric epithelium invasion were noted in FcRn−/− mice. C57BL/6J wild-type or FcRn−/− mice were also infected with Helicobacter pylori SS1, and the results of the bacterial load in stomachs of these mice and the anti-H. pylori IgG levels in serum and gastric juice were similar to those from H. heilmannii infection. Our data suggest that FcRn can be functionally expressed in the stomach, which is involved in transcytosis of IgG, and prevent colonization by H. heilmannii and the associated pathological consequences of infection.
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix/Per-ARNT-Sim domain transcription factor, which is activated by various xenobiotic ligands. AHR is known to be abundant in liver tissue and to be associated with hepatic steatosis. However, it has not yet been elucidated how the activation of AHR promotes hepatic steatosis. The aim of this study is to clarify the role of AHR in hepatic steatosis. The intraperitoneal injection of 3-methylcholanthrene (3MC), a potent AHR ligand, into C57BL/6J mice significantly increased the levels of triglycerides and six long-chain monounsaturated fatty acids in the livers of mice, resulting in hepatic microvesicular steatosis. 3MC significantly enhanced the expression level of fatty acid translocase (FAT), a factor regulating the uptake of long-chain fatty acids into hepatocytes, in the liver. In an in vitro experiment using human hepatoma HepG2 cells, 3MC increased the expression level of FAT, and the downregulation of AHR by AHR siRNA led to the suppression of 3MC-induced FAT expression. In addition, the mRNA level of peroxisome proliferator-activated receptor (PPAR) α, an upstream factor of FAT, was increased in the livers of 3MC-treated mice. Taking together, AHR activation induces hepatic microvesicular steatosis by increasing the expression level of FAT.
Previous studies using cultured cells showed that primary cilia are present in quiescent cells, but are absent in proliferating cells. We studied here the relationship between the presence or absence of primary cilia and the cell cycle arrest of normal epithelial cells and cancer cells in the human normal breast and breast cancer tissues. In normal breast tissues, although most epithelial cells were nonproliferating as estimated by the immunofluorescence staining of the proliferation marker Ki-67, primary cilia were present only in 20-40% of the epithelial cells. In breast cancer tissues, primary cilia were not observed in any of the breast cancer cells. Furthermore, primary cilia were hardly observed in the nonproliferating cancer cells in the orthotopic and metastatic human breast cancer xenograft tumors in mice. These results indicate that the absence of primary cilia does not necessarily represent the proliferating phases of normal epithelial cells and cancer cells.
Our understanding of the mechanism of cancer dormancy is emerging, but the underlying mechanisms are not fully understood. Here we analyzed mouse xenograft tumors derived from human breast cancer tissue and the human breast cancer cell line MDA-MB-231 to identify the molecules associated with cancer dormancy. In immunohistological examination using the proliferation marker Ki-67, the tumors included both proliferating and dormant cancer cells, but the number of dormant cells was remarkably increased when they metastasized to the lung. In the gene expression analysis of the orthotopic cancer cells by a single-cell multiplex real-time quantitative reverse transcription PCR followed by flow cytometric analysis, restrained cellular proliferation was associated with downregulation of the chemokine receptor CXCR4. In the immunohistological and flow cytometric analyses, the expression level of CXCR4 in the metastasized cancer cells was decreased compared with that in the cancer cells in orthotopic tumors, although the expression level of the CXCR4 ligand CXCL12 was not reduced in the lung. In addition, the proliferation of the metastasized cancer cells was further decreased by the CXCR4 antagonist administration. In the ex vivo culture of the metastasized cancer cells, the expression level of CXCR4 was increased, and in the xenotransplantation of ex vivo cultured cancer cells, the expression level of CXCR4 was again decreased in the metastasized cancer cells in the lung. These findings indicate that CXCR4 is downregulated in metastasized breast cancer cells and implicated in their dormancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.