A non-targeted detection method using near-infrared (NIR) spectroscopy combined with chemometric modeling was developed for the rapid screening of commercial milk powder (MP) products as authentic or potentially mixed with known and unknown adulterants. Two benchtop FT-NIR spectrometers and a handheld NIR device were evaluated for model development. The performance of SIMCA classification models was then validated using an independent test set of genuine MP samples and a set of gravimetrically prepared mixtures consisting of MPs spiked with each of eleven potential adulterants. Classification models yielded 100% sensitivities for the benchtop spectrometers. Better specificity, which was influenced by the nature of the adulterant, was obtained for the benchtop FT-NIR instruments than for the handheld NIR device, which suffered from lower spectral resolution and a narrower spectral range. FT-NIR spectroscopy and SIMCA classification models show promise for the rapid screening of commercial MPs for the detection of potential adulteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.