This work is an overview of various equivalent circuits (ECs) containing various degrees of detail. The ECs are evaluated in terms of model accuracy and parameterization time for the systematic assignment of an equivalent circuit to application fields. For this purpose, impedance spectra were measured using electrochemical impedance spectroscopy at different states of charge, health and temperatures. Then the parameters of the EC were extracted using the least‐squares method and the Levenberg–Marquardt algorithm. After comparing the simulated to the measured impedance spectrum, a review and assignment of equivalent circuits for potential applications is given. Simple equivalent circuits with a series resistor and a maximum of two resistance–capacitance (RC) elements are ideal for simulations with lower dynamics. Equivalent circuits with up to five RC elements or even a constant‐phase element (CPE) are promising for simulating highly dynamic processes. By using RCPE elements the impedance spectrum can be modeled with the highest accuracy, which is why this type of model should be used for diagnostic purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.