An asymmetric zinc phthalocyanine dye (KH1) bearing three 2,6-di-tert-butyl-4-methylphenoxy donor groups and carboxylic acid anchoring group was synthesized as a sensitizer for dye-sensitized solar cells (DSSCs). The DSSC based on...
Photophysical, photovoltaic, and charge transport properties of fused core-modified expanded porphyrins containing two pyrroles, one dithienothiophene (DTT) unit, and 1–4 thiophenes (1–4) were inspected by using density functional theory (DFT) and time-dependent DFT. Compounds 1–3 have been investigated experimentally before, but 4 is a theoretical proposal whose photophysical features match those extrapolated from 1 to 3. They exhibit absorption in the range of 700–970 nm for their Q bands and 500–645 nm for their Soret bands. The rise of thiophene rings placed in front of the DTT unit in the expanded porphyrin ring causes a bathochromic shift of the longest absorption wavelength, leading to near-infrared absorptions, which represent 49% of the solar energy. All the systems show a thermodynamically favorable process for the electron injection from the dye to TiO2 and adsorption on a finite TiO2 model. The electron regeneration of the dye is only thermodynamically feasible for the smallest expanded porphyrins 1 and 2 when I−/I3− electrolyte is used. The charge transport study shows that for voltages lower than 0.4 V, junctions featuring pentaphyrin 1 and octaphyrin 4 are more conductive than those containing hexaphyrin 2 or heptaphyrin 3. The results showed that the four fused core-modified expanded porphyrins investigated are potential dyes for applications in dye-sensitized solar cells, mainly pentaphyrin 1 and hexaphyrin 2. Moreover, increasing the number of thiophene rings in the macrocycle proved fruitful in favoring absorption in the near-infrared region, which is highly desired for dye-sensitized solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.