Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum catalysts for the oxygen reduction reaction (ORR) in fuel cells; however, their active site structures remain poorly understood. A leading postulate is that the iron-containing active sites exist primarily in a pyridinic Fe-N4 ligation environment, yet, molecular model catalysts generally feature pyrrolic coordination. Herein, we report a molecular pyridinic hexaazacyclophane macrocycle, (phen2N2)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for ORR to a typical Fe-N-C material and prototypical pyrrolic iron macrocycles. N 1s XPS and XAS signatures for (phen2N2)Fe are remarkably similar to those of Fe-N-C. Electrochemical studies reveal that (phen2N2)Fe has a relatively high Fe(III/II) potential with a correlated ORR onset potential within 150 mV of Fe-N-C. Unlike the pyrrolic macrocycles, (phen2N2)Fe displays excellent selectivity for four-electron ORR, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data demonstrate that (phen2N2)Fe is a more effective model of Fe-N-C active sites relative to the pyrrolic iron macrocycles, thereby establishing a new molecular platform that can aid understanding of this important class of catalytic materials.
Atomically defined interfaces that maximize the density of active sites and harness the electronic metal−support interaction are desirable to facilitate challenging multielectron transformations, but their synthesis remains a considerable challenge. We report the rational synthesis of the atomically defined metal chalcogenide nanopropeller Fe 3 Co 6 Se 8 L 6 (L = Ph 2 PNTol) featuring three Fe edge sites, and its ensuing catalytic activity for carbodiimide formation. The complex interaction between the Fe edges and Co 6 Se 8 support, including the interplay between oxidation state, substrate coordination, and metal−support interaction, is probed in detail using chemical and electrochemical methods, extensive single crystal X-ray diffraction, and electronic absorption and Mossbauer spectroscopy.
The designed [3M-3(μ-H)] clusters (M = Fe(II), Co(II)) Fe3H3L (1-H) and Co3H3L (2-H) [where L(3-) is a tris(β-diketiminate) cyclophane] were synthesized by treating the corresponding M3Br3L complexes with KBEt3H. From single-crystal X-ray analysis, the hydride ligands are sterically protected by the cyclophane ligand, and these complexes selectively react with CO2 over other unsaturated substrates (e.g., CS2, Me3SiCCH, C2H2, and CH3CN). The reaction of 1-H or 2-H with CO2 at room temperature yielded Fe3(OCHO)(H)2L (1-CO2) or Co3(OCHO)(H)2L (2-CO2), respectively, which evidence the differential reactivity of the hydride ligands within these complexes. The analogous reactions at elevated temperatures revealed a distinct difference in the reactivity pattern for 2-H as compared to 1-H; Fe3(OCHO)3L (1-3CO2) was generated from 1-H, while 2-H afforded only 2-CO2.
Tuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.