The year 2020 brought unimaginable challenges in public health, with the confluence of the COVID-19 pandemic and wildfires across the western United States. Wildfires produce high levels of fine particulate matter (PM2.5). Recent studies reported that short-term exposure to PM2.5 is associated with increased risk of COVID-19 cases and deaths. We acquired and linked publicly available daily data on PM2.5, the number of COVID-19 cases and deaths, and other confounders for 92 western U.S. counties that were affected by the 2020 wildfires. We estimated the association between short-term exposure to PM2.5 during the wildfires and the epidemiological dynamics of COVID-19 cases and deaths. We adjusted for several time-varying confounding factors (e.g., weather, seasonality, long-term trends, mobility, and population size). We found strong evidence that wildfires amplified the effect of short-term exposure to PM2.5 on COVID-19 cases and deaths, although with substantial heterogeneity across counties.
We show how entropy balancing can be used for transporting experimental treatment effects from a trial population onto a target population. This method is doubly robust in the sense that if either the outcome model or the probability of trial participation is correctly specified, then the estimate of the target population average treatment effect is consistent. Furthermore, we only require the sample moments of the effect modifiers drawn from the target population to consistently estimate the target population average treatment effect. We compared the finite-sample performance of entropy balancing with several alternative methods for transporting treatment effects between populations. Entropy balancing techniques are efficient and robust to violations of model misspecification. We also examine the results of our proposed method in an applied analysis of the Action to Control Cardiovascular Risk in Diabetes Blood Pressure trial transported to a sample of US adults with diabetes taken from the National Health and Nutrition Examination Survey cohort.
A common goal in observational research is to estimate marginal causal effects in the presence of confounding variables. One solution to this problem is to use the covariate distribution to weight the outcomes such that the data appear randomized. The propensity score is a natural quantity that arises in this setting. Propensity score weights have desirable asymptotic properties, but they often fail to adequately balance covariate data in finite samples. Empirical covariate balancing methods pose as an appealing alternative by exactly balancing the sample moments of the covariate distribution. With this objective in mind, we propose a framework for estimating balancing weights by solving a constrained convex program where the criterion function to be optimized is a Bregman distance. We then show that the different distances in this class render identical weights to those of other covariate balancing methods. A series of numerical studies are presented to demonstrate these similarities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.