Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20°C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log 10 PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5°C; a 5-min pressure treatment of 350 MPa at 30°C inactivated 1.15 log 10 PFU of virus, while the same treatment at 5°C resulted in a reduction of 5.56 log 10 PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5°C and 20°C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5°C was sufficient to inactivate 4.05 log 10 PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.
From 1991 through 1998, 1,266 cases of shellfish-related illnesses were attributed to Norwalk-like viruses. Seventy-eight percent of these illnesses occurred following consumption of oysters harvested from the Gulf Coast during the months of November through January. This study investigated the ability of eastern oysters (Crassostrea virginica) to accumulate indicator microorganisms (i.e., fecal coliforms, Escherichia coli, Clostridium perfringens, and F ؉ coliphage) from estuarine water. One-week trials over a 1-year period were used to determine if these indicator organisms could provide insight into the seasonal occurrence of these gastrointestinal illnesses. The results demonstrate that oysters preferentially accumulated F ؉ coliphage, an enteric viral surrogate, to their greatest levels from late November through January, with a concentration factor of up to 99-fold. However, similar increases in accumulation of the other indicator microorganisms were not observed. These findings suggest that the seasonal occurrence of shellfish-related illnesses by enteric viruses is, in part, the result of seasonal physiological changes undergone by the oysters that affect their ability to accumulate viral particles from estuarine waters.
Two samples of market oysters, primarily from retail establishments, were collected twice each month in each of nine states during 2007. Samples were shipped refrigerated overnight to five U.S. Food and Drug Administration laboratories on a rotating basis and analyzed by most probable number (MPN) for total and pathogenic Vibrio parahaemolyticus and V. vulnificus numbers and for the presence of toxigenic V. cholerae, Salmonella spp., norovirus (NoV), and hepatitis A virus (HAV). Levels of indicator organisms, including fecal coliforms (MPN), Escherichia coli (MPN), male-specific bacteriophage, and aerobic plate counts, were also determined. V. parahaemolyticus and V. vulnificus levels were distributed seasonally and geographically by harvest region and were similar to levels observed in a previous study conducted in 1998-1999. Levels of pathogenic V. parahaemolyticus were typically several logs lower than total V. parahaemolyticus levels regardless of season or region. Pathogenic V. parahaemolyticus levels in the Gulf and Mid-Atlantic regions were about two logs greater than the levels observed in the Pacific and North Atlantic regions. Pathogens generally associated with fecal pollution were detected sporadically or not at all (toxigenic V. cholerae, 0%; Salmonella, 1.5%; NoV, 3.9%; HAV, 4.4%). While seasonal prevalences of NoV and HAV were generally greater in oysters harvested from December to March, the low detection frequency obscured any apparent seasonal effects. Overall, there was no relationship between the levels of indicator microorganisms and the presence of enteric viruses. These data provide a baseline that can be used to further validate risk assessment predictions, determine the effectiveness of new control measures, and compare the level of protection provided by the U.S. shellfish sanitation system to those in other countries.
Model results indicated that the mean WWTP influent concentration of NoV GII (3.9 log 10 gc/liter; 95% credible interval [CI], 3.5, 4.3 log 10 gc/liter) is larger than the value for NoV GI (1.5 log 10 gc/liter; 95% CI, 0.4, 2.4 log 10 gc/liter), with large variations occurring from one WWTP to another. For WWTPs with mechanical systems and chlorine disinfection, mean log 10 reductions were ؊2.4 log 10 gc/liter (95% CI, ؊3.9, ؊1.1 log 10 gc/liter) for NoV GI, ؊2.7 log 10 gc/liter (95% CI, ؊3.6, ؊1.9 log 10 gc/liter) for NoV GII, and ؊2.9 log 10 PFU per liter (95% CI, ؊3.4, ؊2.4 log 10 PFU per liter) for MSCs. Comparable values for WWTPs with lagoon systems and chlorine disinfection were ؊1.4 log 10 gc/liter (95% CI, ؊3.3, 0.5 log 10 gc/liter) for NoV GI, ؊1.7 log 10 gc/liter (95% CI, ؊3.1, ؊0.3 log 10 gc/liter) for NoV GII, and ؊3.6 log 10 PFU per liter (95% CI, ؊4.8, ؊2.4 PFU per liter) for MSCs. Within WWTPs, correlations exist between mean NoV GI and NoV GII influent concentrations and between the mean log 10 reduction in NoV GII and the mean log 10 reduction in MSCs.H uman norovirus (NoV) is the leading cause of food-associated gastroenteritis in the United States (1) and Canada (2). U.S. residents are estimated to experience five episodes of norovirus gastroenteritis in their lifetimes (3). NoV is primarily spread via the fecal-oral route. However, attribution of a particular case of NoV illness to a specific source is complex. The transmission may be direct (person to person) or indirect (via contact with contaminated fomites) or may occur through the ingestion of contaminated food or water (4). Noroviruses are genetically diverse, comprising six genogroups (5), three of which (genogroup I [GI], GII, and GIV) are capable of causing illness in humans (6).Among foodborne NoV outbreaks, bivalve molluscs (e.g., clams, oysters, mussels), leafy vegetables, and fruits are the most frequently implicated (7). More than half of the norovirus outbreaks attributed to the consumption of bivalve molluscs in the United States during the years from 2001 to 2008 are believed to have originated from contamination during production or processing (7). Bivalve molluscan shellfish typically grow in estuaries, which may contain NoV-contaminated human fecal material from municipal wastewater outfalls, combined sewer overflow, or nonpoint sources of pollution, including human waste discharged from marine vessels (8, 9). Bivalve molluscan shellfish feed on algae from the surrounding water. During this feeding process, each bivalve mollusc may filter 20 to 90 liters of water per day and bioaccumulate a variety of microorganisms, including viruses and bacteria that are associated with pollution sources (8,(10)(11)(12). Significantly, molluscan shellfish have been found to retain viruses to a greater extent and for much longer periods than they do bacteria (8,13,14). Bivalve molluscs, therefore, may become contaminated with NoV when they are grown in harvesting areas contaminated with human wastes.In the United States and in Canada, ar...
, J. Food Prot. 65:1605-1609, 2002); however, direct evaluation of HAV inactivation within contaminated oysters was not performed. In this study, we report confirmation that HAV within contaminated shellfish is inactivated by HHP. Shellfish were initially contaminated with HAV by using a flowthrough system. PFU reductions of >1, >2, and >3 log 10 were observed for 1-min treatments at 350, 375, and 400 megapascals, respectively, within a temperature range of 8.7 to 10.3°C. Bioconcentration of nearly 6 log 10 PFU of HAV per oyster was achieved under simulated natural conditions. These results suggest that HHP treatment of raw shellfish will be a viable strategy for the reduction of infectious HAV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.