Insecticide imidacloprid and herbicide glyphosate have a broad spectrum of applicable use in the agricultural sector of Egypt. Their ability to induce in vitro cytotoxic and oxidative stress on normal human cells (prostate epithelial WPM-Y.1 cell line) was evaluated with the methyl tetrazolium test (MTT) and histopathological investigation. Cell viability was evaluated with an MTT test for 24 h. The median inhibition concentration (IC50) values were 0.023 and 0.025 mM for imidacloprid and glyphosate, respectively. Sublethal concentrations: 1/10 and 1/50 of IC50 and IC50 levels significantly induced an increase in the lactate dehydrogenase (LDH) activity and malondialdehyde (MDA) level compared with the untreated cells. Rapid decrease in the glutathione (GSH) content and glutathione-S-transferase (GST) activity was induced. Significant increases were recorded in activities of catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), respectively, compared with the control group. Transmission electron microscopic (TEM) investigation showed significant defects in the cells following pesticide treatments for 24 h. Therefore, it is concluded that imidacloprid and glyphosate are very toxic in vitro assays and able to induce apoptotic effects as well as oxidative stress. So, these findings provide a scenario of multibiomarkers to achieve the imposed risks of pesticides at low doses.
A quantitative assessment of the genotoxicity of silver nanoparticles (AgNPs) ascribed to its transplacental transfer and tissue distribution in pregnant rats was carried out in this study. A single intravenous (i.v.) injection of AgNPs with a size range from 4.0 to 17.0 nm was administered to pregnant rats at a dose of 2 mg/kg b.w. on the 19th day of gestation. Five groups beside control, each of the five rats were euthanized after 10 min, 1, 6, 12, or 24 h, respectively. The accumulation of nanoparticles (NPs) in mother and fetal tissues was quantified by inductively coupled plasma optical emission spectroscopy, where the highest accumulation level was recorded in maternal blood (0.523 µg/ml) after 24 h of administration. AgNPs induced accumulation in spleen tissue higher than placenta and fetal tissue homogenates. The data showed significantly detected levels of 8-hydroxydeoxyguanosine in all collected samples from administered animals compared with untreated individuals. Level of 8-OHdG in amniotic fluid exhibited the greatest values followed by maternal spleen, kidneys, and liver, respectively. Investigation by transmission electron microscope showed that the transfer of AgNPs through placental wall caused indentation of nuclei, clumped chromatin, pyknotic nuclei, and focal necrotic areas, while AgNPs appeared mainly accumulated in the macrophages of the spleen. Therefore, the data assume that the genotoxicity studies of AgNPs must be recommended during a comprehensive assessment of the safety of novel types of NPs and nanomaterials. Additionally, exposure to AgNPs must be prevented or minimized during pregnancy or prenatal periods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.