A highly contorted, carbon-rich intrinsically microporous polyimide (PIM-PI) made from spirobifluorene dianhydride and 3,3-dimethylnaphthidine (SBFDA-DMN) was employed as a precursor for the formation of carbon molecular sieve (CMS) membranes at pyrolysis temperatures from 550 to 1000 °C. The high carbon content of SBFDA-DMN (~84%) resulted in only 28% total weight loss during pyrolysis under a nitrogen atmosphere at 1000 °C. The development of the various microstructural textures was characterized by gas sorption analysis, Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction, Raman spectroscopy, electrical conductivity, and gas transport properties. Heat treatment of a pristine SBFDA-DMN membrane at 550 °C resulted in reduced permeability for all gases (e.g.: P CO2 dropped from 4700 to 1500 barrer) as well as lower BET surface area from 621 to 545 m 2 g -1 . At 600 °C, new pores induced by pyrolysis increased the BET surface area to nearly that of the precursor and significantly improved gas separation performance. Above 600 °C, a progressive collapse of the micropores became evident with CMS membranes showing higher gas-pair selectivity but lower permeability. At 1000 °C, ultra-micropores comparable in size with the kinetic diameter of CH 4 emerged and induced a prominent molecular sieving effect resulting in very high CH 4 rejection. This strong size exclusion effect, further supported by gravimetric gas sorption measurements, resulted in unusually high N 2 /CH 4 and CO 2 /CH 4 selectivities of 35 and 1475, respectively.
Ultra-thin composite carbon molecular sieve (CMS) membranes were fabricated on well-defined inorganic alumina substrates using a polymer of intrinsic microporosity (PIM) as a precursor. Details of the pyrolysis-related structural development were elucidated using focused-beam, interference-enhanced spectroscopic ellipsometry (both in the UV–vis and IR range), which allowed accurate determination of the film thickness, optical properties as well as following the chemical transformations. The pyrolysis-induced collapse of thin and bulk PIM-derived CMS membranes was compared with CMS made from a well-known non-PIM precursor 6FDA–DABA. Significant differences between the PIM and non-PIM precursors were discovered and explained by a much larger possible volume contraction in the PIM. In spite of the differences, surprisingly, the gas separation properties did not fundamentally differ. The high-temperature collapse of the initially amorphous and isotropic precursor structure was accompanied by a significant molecular orientation within the formed turbostratic carbon network guided by the laterally constraining presence of the substrate. This manifested itself in the development of uniaxial optical anisotropy, which was shown to correlate with increases in gas separation selectivity for multiple technologically important gas pairs. Reduction of CMS skin thickness significantly below ∼1 μm induced large losses in permeability coefficients with only small to moderate effects on selectivity. Remarkably, skin thickness reduction and physical aging seemed to superimpose onto the same trend, which explains and strengthens some of the earlier fundamental insights.
Solution‐processable amorphous glassy polymers of intrinsic microporosity (PIMs) are promising microporous organic materials for membrane‐based gas and liquid separations due to their high surface area and internal free volume, thermal and chemical stability, and excellent separation performance. This review provides an overview of the most recent developments in the design and transport properties of novel ladder PIM materials, polyimides of intrinsic microporosity (PIM–PIs), functionalized PIMs and PIM–PIs, PIM‐derived thermally rearranged (TR), and carbon molecular sieve (CMS) membrane materials as well as PIM‐based thin film composite membranes for a wide range of energy‐intensive gas and liquid separations. In less than two decades, PIMs have significantly lifted the performance upper bounds in H2/N2, H2/CH4, O2/N2, CO2/N2, and CO2/CH4 separations. However, PIMs are still limited by their insufficient gas‐pair selectivity to be considered as promising materials for challenging industrial separations such as olefin/paraffin separations. An optimum pore size distribution is required to further improve the selectivity of a PIM for a given application. Specific attention is given to the potential use of PIM‐based CMS membranes for energy‐intensive CO2/CH4, N2/CH4, C2H4/C2H6, and C3H6/C3H8 separations, and thin film composite membranes containing PIM motifs for liquid separations.
Solution-processible amorphous glassy polymers of intrinsic microporosity (PIM) are promising microporous organic materials for membrane-based gas-and liquid separations due to their high surface area and internal free volume, thermal and chemical stability and, most importantly, excellent separation performance. This review provides an overview of the most recent developments in the design and transport properties of novel ladder PIM materials, polyimides of intrinsic microporosity (PIM-PIs), functionalized PIMs and PIM-PIs, PIMs-derived thermally rearranged (TR) and carbon molecular sieve (CMS) membrane materials as well as PIM building block-containing thin-film composite membranes for a wide range of energy-intensive gas-and liquid separations. In less than two decades, PIMs have significantly lifted the performance upper bounds in H2/N2, H2/CH4, O2/N2, CO2/N2, and CO2/CH4 separations. However, PIMs are still limited by their insufficient gas-pair selectivity to be considered as promising materials for challenging industrial separations such as olefin/paraffin separations. An optimum pore size distribution is required to further improve the selectivity of a PIM for a given application. Specific attention is given to the potential use of PIM-based CMS membranes for energy-intensive CO2/CH4, N2/CH4, C2H4/C2H6 and C3H6/C3H8 separations, and thin-film composite membranes containing PIM building blocks for liquid separations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.