Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21 500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6–85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.
EGFR mutations correlate with improved clinical outcome whereas KRAS mutations are associated with lack of response to tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Endobronchial ultrasound (EBUS)-transbronchial needle aspiration (TBNA) is being increasingly used in the management of NSCLC. Co-amplification at lower denaturation temperature (COLD)–polymerase chain reaction (PCR) (COLD-PCR) is a sensitive assay for the detection of genetic mutations in solid tumours. This study assessed the feasibility of using COLD-PCR to screen for EGFR and KRAS mutations in cytology samples obtained by EBUS-TBNA in routine clinical practice. Samples obtained from NSCLC patients undergoing EBUS-TBNA were evaluated according to our standard clinical protocols. DNA extracted from these samples was subjected to COLD-PCR to amplify exons 18–21 of EGFR and exons two and three of KRAS followed by direct sequencing. Mutation analysis was performed in 131 of 132 (99.3%) NSCLC patients (70F/62M) with confirmed lymph node metastases (94/132 (71.2%) adenocarcinoma; 17/132 (12.8%) squamous cell; 2/132 (0.15%) large cell neuroendocrine; 1/132 (0.07%) large cell carcinoma; 18/132 (13.6%) NSCL-not otherwise specified (NOS)). Molecular analysis of all EGFR and KRAS target sequences was achieved in 126 of 132 (95.5%) and 130 of 132 (98.4%) of cases respectively. EGFR mutations were identified in 13 (10.5%) of fully evaluated cases (11 in adenocarcinoma and two in NSCLC-NOS) including two novel mutations. KRAS mutations were identified in 23 (17.5%) of fully analysed patient samples (18 adenocarcinoma and five NSCLC-NOS). We conclude that EBUS-TBNA of lymph nodes infiltrated by NSCLC can provide sufficient tumour material for EGFR and KRAS mutation analysis in most patients, and that COLD-PCR and sequencing is a robust screening assay for EGFR and KRAS mutation analysis in this clinical context.
Summary. We have developed a sensitive, competitive, nested reverse transcription polymerase chain reaction (RT-PCR) titration assay that quantifies the number of Wilm's tumour (WT1) gene transcripts in bone marrow (BM) and peripheral blood (PB), coupled with a competitive RT-PCR protocol for the ABL gene as control. We studied BM/PB samples from 107 acute myeloid leukaemia (AML) patients and 22 acute lymphoblastic leukaemia (ALL) patients at presentation and detected the WT1 gene in > 90% of patients by a qualitative assay. Quantitative analysis of WT1 transcript at presentation in 66 patients (52 AML, 14 ALL) correlated significantly with remission rate, disease-free survival (DFS) and overall survival (OS) (P ¼ 0AE003). WT1 levels were normalized to 10 5 ABL transcripts. Within good and standard cytogenetic risk groups, high WT1 levels correlated with poorer outcome. Serial quantification was performed in 35 patients (28 AML, seven ALL); those with less than 10 3 copies of WT1 after induction and second consolidation chemotherapy had significantly better DFS and OS. Fourteen patients have relapsed with a median complete remission duration of 12 (range 4-49) months. We detected a rise in WT1 levels in nine out of 14 patients, 2-4 months before the onset of haematological relapse, whereas in the remaining five patients, WT1 levels remained persistently high during the disease course. WT1 levels were lower in PB than in BM, but mirrored changes in the BM samples and were equally informative. We suggest that WT1 is a useful molecular target to monitor minimal residual disease in acute leukaemia, especially in cases without a specific fusion gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.