Multifunctional colloidosomes are prepared from molecularly imprinted polymer nanoparticles and fluorogenic boronic acid using a Cu(I)-catalyzed click reaction. The molecular selectivity of the colloidosomes was investigated by radioligand binding analysis, which indicated that the inter-particle click reaction did not affect the molecular specificity of the MIP nanoparticles on the colloidosomes for the model template, propranolol. Besides specific molecular recognition of the MIP nanoparticles, the colloidosomes also displayed dose-dependent fluorescence response to fructose at physiological pH.Moreover, the immobilized boronic acid in the core could effectively bind isoproterenol, a template analogue containing a catecholamine moiety. The depletion of isoproterenol from solution allowed the MIP nanoparticles on the colloidosomes to bind propranolol more efficiently. The pre-designed molecular selectivity and fluorescence response of the colloidosomes are interesting for potential applications in controlled delivery, chemical sensing and bioseparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.