In the context of Markov processes, both in discrete and continuous setting, we show a general relation between duality functions and symmetries of the generator. If the generator can be written in the form of a Hamiltonian of a quantum spin system, then the "hidden" symmetries are easily derived. We illustrate our approach in processes of symmetric exclusion type, in which the symmetry is of SU(2) type, as well as for the KipnisMarchioro-Presutti (KMP) model for which we unveil its SU(1, 1) symmetry. The KMP model is in turn an instantaneous thermalization limit of the energy process associated to a large family of models of interacting diffusions, which we call Brownian energy process (BEP) and which all possess the SU(1, 1) symmetry. We treat in details the case where the system is in contact with reservoirs and the dual process becomes absorbing.
We study condensation in several particle systems related to the inclusion process. For an asymmetric one-dimensional version with closed boundary conditions and drift to the right, we show that all but a finite number of particles condense on the right-most site. This is extended to a general result for independent random variables with different tails, where condensation occurs for the index (site) with the heaviest tail, generalizing also previous results for zero-range processes. For inclusion processes with homogeneous stationary measures we establish condensation in the limit of vanishing diffusion strength in the dynamics, and give several details about how the limit is approached for finite and infinite systems. Finally, we consider a continuous model dual to the inclusion process, the so-called Brownian energy process, and prove similar condensation results.
We prove a comparison inequality between a system of independent random walkers and a system of random walkers which either interact by attracting each other -a process which we call here the symmetric inclusion process (SIP) -or repel each other -a generalized version of the well-known symmetric exclusion process. As an application, new correlation inequalities are obtained for the SIP, as well as for some interacting diffusions which are used as models of heat conduction, -the so-called Brownian momentum process, and the Brownian energy process. These inequalities are counterparts of the inequalities (in the opposite direction) for the symmetric exclusion process, showing that the SIP is a natural bosonic analogue of the symmetric exclusion process, which is fermionic. Finally, we consider a boundary driven version of the SIP for which we prove duality and then obtain correlation inequalities.
The inclusion process is a stochastic lattice gas, which is a natural bosonic counterpart of the well-studied exclusion process and has strong connections to models of heat conduction and applications in population genetics. Like the zero-range process, due to attractive interaction between the particles, the inclusion process can exhibit a condensation transition. In this paper we present first rigorous results on the dynamics of the condensate formation for this class of models. We study the symmetric inclusion process on a finite set $S$ with total number of particles $N$ in the regime of strong interaction, i.e. with independent diffusion rate $m=m_N \to 0$. For the case $N m_N\to\infty$ we show that on the time scale $1/m_N$ condensates emerge from general homogeneous initial conditions, and we precisely characterize their limiting dynamics. In the simplest case of two sites or a fully connected underlying random walk kernel, there is a single condensate hopping over $S$ as a continuous-time random walk. In the non fully connected case several condensates can coexist and exchange mass via intermediate sites in an interesting coarsening process, which consists of a mixture of a diffusive motion and a jump process, until a single condensate is formed. Our result is based on a general two-scale form of the generator, with a fast-scale neutral Wright-Fisher diffusion and a slow-scale deterministic motion. The motion of the condensates is described in terms of the generator of the deterministic motion and the harmonic projection corresponding to the absorbing states of the Wright-Fisher diffusion.Comment: 30 pages, 2 figures; minor corrections, including proof of Lemma 3.
Focusing on a specific crowd dynamics situation, including real life experiments and measurements, our paper targets a twofold aim: (1) we present a Bayesian probabilistic method to estimate the value and the uncertainty (in the form of a probability density function) of parameters in crowd dynamic models from the experimental data; and (2) we introduce a fitness measure for the models to classify a couple of model structures (forces) according to their fitness to the experimental data, preparing the stage for a more general model-selection and validation strategy inspired by probabilistic data analysis. Finally, we review the essential aspects of our experimental setup and measurement technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.