Epithelial-to-mesenchymal transition (EMT) is strongly associated with cancer progression, but its potential role during premalignant development has not been studied. Here, we show that a 4-week exposure of immortalized human bronchial epithelial cells (HBEC) to tobacco carcinogens can induce a persistent, irreversible, and multifaceted dedifferentiation program marked by EMT and the emergence of stem cell-like properties. EMT induction was epigenetically driven, initially by chromatin remodeling through H3K27me3 enrichment and later by ensuing DNA methylation to sustain silencing of tumor-suppressive microRNAs (miRNA), miR-200b, miR-200c, and miR-205, which were implicated in the dedifferentiation program in HBECs and also in primary lung tumors. Carcinogen-treated HBECs acquired stem cell-like features characterized by their ability to form spheroids with branching tubules and enrichment of the CD44 high /CD24 low , CD133, and ALDH1 stem cell-like markers. miRNA overexpression studies indicated that regulation of the EMT, stem-like, and transformed phenotypes in HBECs were distinct events. Our findings extend present concepts of how EMT participates in cancer pathophysiology by showing that EMT induction can participate in cancer initiation to promote the clonal expansion of premalignant lung epithelial cells. Cancer Res; 71(8);
Chemokines are important regulators of directional cell migration and tumor metastasis. A genome-wide transcriptome array designed to uncover novel genes silenced by methylation in lung cancer identified the CXC-subfamily of chemokines. Expression of eleven of the sixteen known human CXC-chemokines was increased in lung adenocarcinoma cell lines after treatment with 5-aza-2deoxycytidine (DAC). Tumor-specific methylation leading to silencing of CXCL5, 12 and 14 was found in over 75% of primary lung adenocarcinomas and DAC treatment restored expression of each silenced gene. Forced expression of CXCL14 in H23 cells where this gene is silenced by methylation increased cell death in vitro and dramatically reduced in vivo growth of lung tumor xenografts through necrosis of up to 90% of the tumor mass. CXCL14 re-expression had a profound effect on the genome altering the transcription of over 1,000 genes, including increased expression of 30 cell cycle inhibitor and pro-apoptosis genes. In addition, CXCL14 methylation in sputum from asymptomatic early stage lung cancer cases was associated with a 2.9-fold elevated risk for this disease compared to controls, substantiating its potential as a biomarker for early detection of lung cancer. Together these findings identify CXCL14 as an important tumor suppressor gene epigenetically silenced during lung carcinogenesis.
Chromosomal aberrations associated with lung cancer are frequently observed in the long arm of chromosome 6. A candidate susceptibility locus at 6q23-25 for lung cancer was recently identified; however, no tumor suppressor genes inactivated by mutation have been identified in this locus. Genetic, epigenetic, gene expression, and in silico screening approaches were used to select 43 genes located in 6q12-27 for characterization of methylation status. Twelve (28%) genes were methylated in at least one lung cancer cell line, and methylation of 8 genes was specific to lung cancer cell lines. Five of the 8 genes with the highest prevalence for methylation in cell lines (TCF21, SYNE1, AKAP12, IL20RA, and ACAT2) were examined in primary lung adenocarcinoma samples from smokers (n = 100) and never smokers (n = 75). The prevalence for methylation of these genes was 81%, 50%, 39%, 26%, and 14%, respectively, and did not differ by smoking status or age at diagnosis. Transcription of SYNE1, AKAP12, and IL20RA was completely silenced by hypermethylation and could be restored after treatment with 5-aza-2-deoxycytidine. Significant associations were found between methylation of SYNE1 and TCF21, SYNE1 and AKAP12, and AKAP12 and IL20RA, indicating a coordinated inactivation of these genes in tumors. A higher prevalence for methylation of these genes was not associated with early-onset lung cancer cases, most likely precluding their involvement in familial susceptibility to this disease. Together, our results indicate that frequent inactivation of multiple candidate tumor suppressor genes within chromosome 6q likely contributes to development of sporadic lung cancer.
Purpose To evaluate the methylation state of 31 genes in sputum as biomarkers in an expanded nested, case-control study from the Colorado Cohort and to assess the replication of results from the most promising genes in an independent case-control study of asymptomatic Stage I lung cancer patients from New Mexico. Experimental Design Cases and controls from Colorado and New Mexico were interrogated for methylation of up to 31 genes using nested, methylation specific PCR. Individual genes and methylation indices were used to assess the association between methylation and lung cancer with logistic regression modeling. Results Seventeen genes with odds ratios of 1.4 – 3.6 were identified and selected for replication in the New Mexico study. Overall, the direction of effects seen in New Mexico was similar to Colorado with the largest increase in case discrimination (odds ratios, 3.2 – 4.2) seen for the PAX5α, GATA5, and SULF2 genes. ROC curves generated from seven gene panels from Colorado and New Mexico studies showed prediction accuracy of 71% and 77%, respectively. A 22-fold increase in lung cancer risk was seen for a subset of New Mexico cases with five or more genes methylated. Sequence variants associated with lung cancer did not improve the accuracy of this gene methylation panel. Conclusions These studies have identified and replicated a panel of methylated genes whose integration with other promising biomarkers could initially identify the highest risk smokers for computed tomography screening for early detection of lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.