Understanding the growth of tropical convective clouds (TCCs) is of vital importance for the early detection of heavy rainfall. This study explores the properties of TCCs that can develop into clouds with a high probability of precipitation. Remotely sensed cloud properties, such as cloud-top temperature (CTT), cloud optical thickness (COT), and cloud effective radius (CER) as measured by a geostationary satellite are trained by a neural network. First, image segmentation identifies TCC objects with different cloud properties. Then, a self-organizing map (SOM) algorithm clusters TCC objects with similar cloud microphysical properties. Finally, the precipitation probability (PP) for each cluster of TCCs is calculated based on the proportion of precipitating TCCs among the total number of TCCs. Precipitating TCCs can be distinguished from non-precipitating TCCs using Integrated Multi-satellitE Retrievals for GPM (Global Precipitation Measurement) precipitation data. Results show that SOM clusters with a high PP (> 70%) satisfy a certain range of cloud properties: CER ≥ 20 μm and CTT < 230 K. PP generally increases with increasing COT, but COT cannot be a clear cloud property to confirm a high PP. For relatively thin clouds (COT < 30), however, CER should be much larger than 20 μm to have a high PP. More importantly, these TCC conditions associated with a PP ≥ 70% are consistent across regions and periods. We expect our results will be useful for satellite nowcasting of tropical precipitation using geostationary satellite cloud properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.