Capture-recapture methods are frequently employed to estimate abundance of cetaceans using photographic techniques and a variety of statistical models. However, there are many unresolved issues regarding the selection and manipulation of images that can potentially impose bias on resulting estimates. To examine the potential impact of these issues we circulated a test data set of dorsal fin images from bottlenose dolphins to several independent research groups. Photo-identification methods were generally similar, but the selection, scoring, and matching of images varied greatly amongst groups. Based on these results we make the following recommendations. Researchers should: (1) determine the degree of marking, or level of distinctiveness, and use images of sufficient quality to recognize animals of that level of distinctiveness;(2) ensure that markings are sufficiently distinct to eliminate the potential for "twins" to occur; (3) stratify data sets by distinctiveness and generate a series of abundance estimates to investigate the influence of including animals of varying degrees of markings; and (4) strive to examine and incorporate variability among analysts into capture-recapture estimation. In this paper we summarize these potential sources of bias and provide recommendations for best practices for using natural markings in a capture-recapture framework.
We conducted a mark‐recapture survey of bottlenose dolphins Tursiops truncatus in the bays, sounds, and estuaries of North Carolina during July 2000, using photographic identification techniques. During this survey we took 7,682 photographs of dolphins and, of these, 3,457 images were of sufficient quality for analysis. We identified 306 dolphins from distinctive nicks and notches on their dorsal fins. Eighry‐six dolphins were photographed on more than one occasion during the course of the survey; one dolphin was photographed on four separate days. We then applied the results of our photographic analyses to several mark‐recapture models and examined potential violations of the assumptions of these models, including an unexpected correlation between photo quality and mark distinctiveness. Our analysis suggests that our results are robusr to possible violations of these assumptions. The resulting estimates were then scaled to account for the proportion (0.46) of unmarked dolphins in the population. Our best estimate of the number of dolphins present in the inshore waters of North Carolina during July 2000 is 1,033 with a 95% Confidence Interval of 860–1,266 (CV = 0.099). Most dolphins were found in the northern part of the study area, which includes the second largest estuarine system in the United States.
Some populations of coastal bottlenose dolphins (Tursiops truncatus) comprise discrete communities, defined by patterns of social association and long-term site fidelity. We tested the hypothesis that bottlenose dolphins in Tampa Bay, Florida, form a single community. The longitudinal study of dolphins in Sarasota Bay, adjacent to Tampa Bay, allowed us to ground-truth the definition of community 619 620
Experimental studies have highlighted the potential in£uence of contaminants on marine mammal immune function and anthropogenic contaminants are commonly believed to in£uence the development of diseases observed in the wild. However, estimates of the impact of contaminants on wild populations are constrained by uncertainty over natural variation in disease patterns under di¡erent environmental conditions. We used photographic techniques to compare levels of epidermal disease in ten coastal populations of bottlenose dolphins (Tursiops truncatus) exposed to a wide range of natural and anthropogenic conditions. Epidermal lesions were common in all populations (a¡ecting 460% of individuals), but both the prevalence and severity of 15 lesion categories varied between populations. No relationships were found between epidermal disease and contaminant levels across the four populations for which toxicological data were available. In contrast, there were highly signi¢cant linear relationships with oceanographic variables. In particular, populations from areas of low water temperature and low salinity exhibited higher lesion prevalence and severity. Such conditions may impact on epidermal integrity or produce more general physiological stress, potentially making animals more vulnerable to natural infections or anthropogenic factors. These results show that variations in natural environmental factors must be accounted for when investigating the importance of anthropogenic impacts on disease in wild marine mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.