Peptidic oligomers that contain both α- and β-amino acid residues, in regular patterns throughout the backbone, are emerging as structural mimics of α-helix-forming conventional peptides (composed exclusively of α-amino acid residues). Here we describe a comprehensive evaluation of diverse α/β-peptide homologues of the Bim BH3 domain in terms of their ability to bind to the BH3-recognition sites on two partner proteins, Bcl-xL and Mcl-1. These proteins are members of the anti-apoptotic Bcl-2 family, and both bind tightly to the Bim BH3 domain itself. All α/β-peptide homologues retain the side chain sequence of the Bim BH3 domain, but each homologue contains periodic α-residue → β3-residue substitutions. Previous work has shown that the ααβαααβ pattern, which aligns the β3-residues in a 'stripe' along one side of the helix, can support functional α-helix mimicry, and the results reported here support this conclusion. The present study provides the first evaluation of functional mimicry by ααβ and αααβ patterns, which cause the β3-residues to spiral around the helix periphery. We find that the αααβ pattern can support effective mimicry of the Bim BH3 domain, as manifested by the crystal structure of an α/β-peptide bound to Bcl-xL, affinity for a variety of Bcl-2 family proteins, and induction of apoptotic signaling in mouse embryonic fibroblast extracts. The best αααβ homologue shows substantial protection from proteolytic degradation relative to the Bim BH3 α-peptide.
Diverse strategies have been explored to mimic the surface displayed by an α-helical segment of a protein, with the goal of creating inhibitors of helix-mediated protein-protein interactions. Many recognition surfaces on proteins, however, are topologically more complex and less regular than a single α-helix. We describe efforts to develop peptidic foldamers that bind to the irregular receptor-recognition surface of vascular endothelial growth factor (VEGF). Our approach begins with a 19-residue α-peptide previously reported by Fairbrother et al. (Biochemistry
1998, 37, 17754) to bind to this surface on VEGF. Systematic evaluation of α → β replacements throughout this 19-mer sequence enabled us to identify homologues that contain up to ~30% β residues, retain significant affinity for VEGF, and display substantial resistance to proteolysis. These α/β-peptides can block VEGF-stimulated proliferation of human umbilical vein endothelial cells.
We report progress toward a general strategy for mimicking the recognition properties of specific α-helices within natural proteins through the use of oligomers that are less susceptible than conventional peptides to proteolysis. The oligomers contain both α- and β-amino acid residues, with the density of the β subunits low enough that an α-helix-like conformation can be formed but high enough to interfere with protease activity. Previous studies with a different protein-recognition system suggested ring-constrained β residues can be superior to flexible β residues in terms of maximizing α/β-peptide affinity for a targeted protein surface. Here, we use mimicry of the 18-residue Bim BH3 domain to expand the scope of this strategy. Two significant advances have been achieved. First, we have developed and validated a new ring-constrained β residue that bears an acidic side chain, which complements previously known analogues that are either hydrophobic or basic. Second, we have discovered that placing cyclic β residues at sites that make direct contact with partner proteins can lead to substantial discrimination between structurally homologous binding partners, the proteins Bcl-xL and Mcl-1. Overall, this study helps to establish that α/β-peptides containing ring-preorganized β residues can reliably provide proteolytically resistant ligands for proteins that naturally evolved to recognize α-helical partners.
Justification for article appearing in Angewandte Chemie:
Foldamers are currently being explored by a number of groups as antagonists of protein-protein interactions. Here we report the first high-resolution structure of a foldamer in complex with its target protein, the anti-apoptotic protein Bcl-xL. The structure demonstrates that α/β-peptide foldamers can accurately mimic natural peptide ligands and that the β-amino acid residues can make unique contacts at the binding interface. This structural information provides a basis for the design of foldamers with enhanced Bcl-xL-binding properties and, more generally, encouragement for continued efforts to develop foldameric inhibitors of other protein-protein interactions.
Das passt! Die erste hochaufgelöste Strukturbestimmung eines Foldamers im Komplex mit seinem Protein‐Target wird beschrieben (siehe Bild; Foldamere in Stabdarstellung). Das Foldamer besteht aus α‐ und β‐Aminosäureresten und ist an das antiapoptotische Protein Bcl‐xL gebunden. Der Komplex ahmt den Bindungsmodus und die wichtigsten Wechselwirkungen von Komplexen natürlicher α‐Peptidliganden mit Bcl‐xL nach. Zusätzliche Kontakte über β‐Aminosäurereste scheinen ebenfalls zur Bindungsaffinität beizutragen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.