Stroke is a devastating disease with limited treatment options. Recently, we found that the peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists troglitazone and pioglitazone reduce injury and inflammation in a rat model of transient cerebral ischemia. The mechanism of this protection is unclear, as these agents can act through PPAR-gamma activation or through PPAR-gamma-independent mechanisms. Therefore, we examined PPAR-gamma expression, DNA binding and transcriptional activity following stroke. In addition, we used a PPAR-gamma antagonist, T0070907, to determine the role of PPAR-gamma during ischemia. Using immunohistochemical techniques and real-time PCR, we found low levels of PPAR-gamma mRNA and PPAR-gamma immunoreactivity in nonischemic brain; however, PPAR-gamma expression dramatically increased in ischemic neurons, peaking 24 h following middle cerebral artery occlusion. Interestingly, we found that in both vehicle- and agonist-treated brains, DNA binding was reduced in the ischemic hemisphere relative to the contralateral hemisphere. Expression of a PPAR-gamma target gene, lipoprotein lipase, was also reduced in ischemic relative to nonischemic brain. Both DNA binding and lipoprotein lipase expression were increased by the addition of the PPAR-gamma agonist rosiglitazone. Finally, we found that rosiglitazone-mediated protection after stroke was reversed by the PPAR-gamma antagonist T0070907. Interestingly, infarction size was also increased by T0070907 in the absence of PPAR-gamma agonist, suggesting that endogenous PPAR-gamma ligands may mitigate the effects of cerebral ischemia.
PurposeHeart failure prevalence is increasing in older adults, and polypharmacy is a major problem in this population. We compared medication regimen complexity using the validated patient-level Medication Regimen Complexity Index (pMRCI) tool in “young-old” (60–74 years) versus “old-old” (75–89 years) patients with heart failure. We also compared pMRCI between patients with ischemic cardiomyopathy (ISCM) versus nonischemic cardiomyopathy (NISCM).Patients and methodsMedication lists were retrospectively abstracted from the electronic medical records of ambulatory patients aged 60–89 years with heart failure. Medications were categorized into three types – heart failure prescription medications, other prescription medications, and over-the-counter (OTC) medications – and scored using the pMRCI tool.ResultsThe study evaluated 145 patients (n=80 young-old, n=65 old-old, n=85 ISCM, n=60 NISCM, mean age 73±7 years, 64% men, 81% Caucasian). Mean total pMRCI scores (32.1±14.4, range 3–84) and total medication counts (13.3±4.8, range 2–30) were high for the entire cohort, of which 72% of patients were taking eleven or more total medications. Total and subtype pMRCI scores and medication counts did not differ significantly between the young-old and old-old groups, with the exception of OTC medication pMRCI score (6.2±4 young-old versus 7.8±5.8 old-old, P=0.04). With regard to heart failure etiology, total pMRCI scores and medication counts were significantly higher in patients with ISCM versus NISCM (pMRCI score 34.5±15.2 versus 28.8±12.7, P=0.009; medication count 14.1±4.9 versus 12.2±4.5, P=0.008), which was largely driven by other prescription medications.ConclusionMedication regimen complexity is high in older adults with heart failure, and differs based on heart failure etiology. Additional work is needed to address polypharmacy and to determine if medication regimen complexity influences adherence and clinical outcomes in this population.
Combined CYP3A genotype was associated with tacrolimus drug disposition in adult heart transplant recipients, but the effect was largely driven by CYP3A5*3. These data suggest that CYP3A4*22 and combined CYP3A genotypes are unlikely to provide additional information beyond CYP3A5 genotype.
Aim: To assess providers’ knowledge, attitudes, perceptions, and experiences related to pharmacogenomic (PGx) testing in pediatric patients. Materials & methods: An electronic survey was sent to multidisciplinary healthcare providers at a pediatric hospital. Results: Of 261 respondents, 71.3% were slightly or not at all familiar with PGx, despite 50.2% reporting prior PGx education or training. Most providers, apart from psychiatry, perceived PGx to be at least moderately useful to inform clinical decisions. However, only 26.4% of providers had recent PGx testing experience. Unfamiliarity with PGx and uncertainty about the clinical value of testing were common perceived challenges. Conclusion: Low PGx familiarity among pediatric providers suggests additional education and electronic resources are needed for PGx examples in which data support testing in children.
Aims: To assess stakeholder perspectives regarding the clinical utility of pharmacogenomic (PGx) testing following kidney, liver, and heart transplantation. Methods: We conducted individual semi-structured interviews and focus groups with kidney, liver, and heart transplantation patients and providers. We analyzed the qualitative data to identify salient themes. Results: The study enrolled 36 patients and 24 providers. Patients lacked an understanding about PGx, but expressed interest in PGx testing. Providers expressed willingness to use PGx testing, but reported barriers to implementation, such as lack of knowledge, lack of evidence demonstrating clinical utility, and patient healthcare burden. Conclusion: Patient and provider educational efforts, including foundational knowledge, clinical evidence, and applications to patient care beyond just immunosuppression, may be useful to facilitate the use of PGx testing in transplant medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.